1. A uniform 4.8 m long ladder of mass 16 kg leans against a frictionless vertical wall as shown in the diagram below.

What minimum force of friction is needed at the base of the ladder to keep it from sliding?
2. A 0.75 kg board of length 2.60 m initially rests on two supports as shown.

What maximum distance, x, from the right-hand support can a 1.2 kg bird walk before the board begins to leave the left-hand support? on the ground How far up the ladder can a 80 kg person climb before the ladder starts sliding?

4 A 65 kg person is $3 / 4$ of the way up a 25 kg uniform ladder as shown in the diagram below. The ladder is leaning against a frictionless surface inclined at 60° to the horizontal. What is the minimum coefficient of friction between the ladder and the floor necessary to maintain equilibrium?

Super challenging (for fun only)

A ladder is leant against the wall. The coefficient of the static friction μ_{1} between the ladder and the wall is 0.3 and the coefficient of the static friction μ_{2} between the ladder and the floor is 0.4 . The center of mass of the ladder is in the middle of it. Find the minimum angle θ that the ladder can form with the floor not to slip down.

Hint 1: mass is not given on purpose because you don't need it
Hint 2: this trig identity is necessary $\boldsymbol{\operatorname { S i n }}(\mathbf{9 0}-\boldsymbol{\theta})=\boldsymbol{\operatorname { C o s }}(\boldsymbol{\theta})$
Hint 3: with the magic of Physics you will end up with three main equations and a few side ones; only the magic of Maths/algebra can get you out of the mess that comes after.
Hint 4: Other than θ, μ_{1} and μ_{2}, all other unknown can be cancelled out somehow.
Hint 5: the $2^{\text {nd }}$ last step should be an equation that contains only three variables θ, μ_{1} and μ_{2} and some trig function.

