1.2 & 1.3(i) - COMPOUND INTEREST: FUTURE VALUE

Goal: Compare simple interest with compound interest.

Example 1: Developing a compound interest formula

Both Eugene and Francine received a \$1000 prize in a math contest. future value (amount) - future worth of

- Eugene bought a \$1000 simple interest GIC (guaranteed investment certificate) with his prize money. It has investment a 5-year term and earns 3.6% paid annually.
- a 5-year term and earns 3.6% paid annually.
 Francine bought a \$1000 compound interest GIC (guaranteed investment certificate) with her prize money. It has a 5-year term and earns 3.6% paid annually.

Compare the future values of Eugene's and Francine's investments at maturity.

Simple Interest:	Compound Interest:							
A= P(1+ct)	Year	Value						
principal) term	1	A = 1000 (1+0.036(1)) = 1000 (1.036) = \$1036						
rate (decimal)	2	A= 1036 (1+ 0.036(1)) = 1036 (1.036) = \$1073.30						
A = 1000 (1 + 0.036 (5))	3	A= 1073.30(1.036) = \$1111.93						
= \$1180	4	A= 1111.93 (1.036)= \$ 1151.96 193.44-1180						
	5	A = 1151.96 (1.036) = \$ 1193.44 = \$ 13.44 more						

The formula for compound interest:

 $A = P(1+i)^n$ A - amount

P - principal

i - interest rate per pay period

n - number of pay periods

Calculate the future values of Eugene's and Francine's investment if the term is 10 years instead.

Eugene Francine

$$A = 1000 (1+0.036(10)) A = 1000 (1+0.036)^{10}$$

 $= $1360 = 1424.29
 $1424.29 - 1360 = 64.29

t A = 1000 (1.036)⁵

term-duration of investment/loan

interest - money earned on investment/

paid on a loan

principal- original amount invested/loaned

Example 2:Determining the future value of an investment with semi-annual compounding

Gerald invested his inheritance of \$20 000 in an account that earns 9.2% compounded semi-annually. The interest rate is fixed for 10 years. He plans to use the money for a sport car in 5 to 10 years. \uparrow

Compare the future value of his investment after 5 years and 10 years. What if his investment were to earn simple interest instead? $A = P(1+i)^n$

5 yrs.
$$A = 20000 (1 + \frac{0.092}{2})^{5 \times 2}$$
 10 yrs. $A = 20000 (1 + 0.046)^{20} \leftarrow 10 \times 2$
= \$31 357.89 = \$49165.87

Example 3: Comparing interest on investments with different compounding periods

Hanna wants to invest \$3000 so that she can renovate her living room in about 3 years; she has the following investment options (annual/semi-annual/monthly/weekly/daily) at 4.8%:

Principal (\$)	3000	3000	3000	3000	3000
Interest Rate	0.048	0.048	0.048	0.048	0.048
Periods / Year	1	3×2=6	12 3×12=36	52 3×52 = 156	365 3×365 = 1095
Value at End of Year	3000 (1+0.048) ³	3000 (1+0.024)	3000(1+0.004)	6	
0	3000	3000	3000	3000	3000
1					
2					
3	3453.07	3458.76	3463.66	3464.42	3464.62

Example 4: Estimating doubling times for investments

Ivan and Jenny invested \$4000 by purchasing CSBs. Ivan's earns 8% compounded annually, while Jenny's earn 9% compounded annually.

a. Estimate the doubling time for each CSB.

b. Verify the estimate by determining the doubling time for each CSB.

Jenny +2/q = 8 years

Assignment: read p. 29; p. 19 #1 – 3; p. 30 #3 – 11 (odds)