1.2 \& 1.3(i) - COMPOUND INTEREST: FUTURE VALUE

Goal: Compare simple interest with compound interest.

Example 1: Developing a compound interest formula
interest -money earned on investment/
paid on a loan
principal-original amount invested/loaned

Both Eugene and Francine received a $\$ 1000$ prize in a math contest. future value (amount) - future worth of

- Eugene bought a $\$ 1000$ simple interest GIC (guaranteed investment certificate) with his prize money. It has investment a 5 -year term and earns 3.6% paid annually.
maturity - contracted end date
- Francine bought a $\$ 1000$ compound interest GIC (guaranteed investment certificate) with her prize money. It has a 5 -year term and earns 3.6% paid annually.
compound interest: interest is eared on both the principal and the accumulated interest.

Compare the future values of Eugene's and Francine's investments at maturity.

The formula for compound interest:

```
A=P(1+i\mp@subsup{)}{}{n}\quadA - amount
    P - principal
    i - interest rate per pay period
    n- number of pay periods
```

Calculate the future values of Eugene's and Francine's investment if the term is 10 years instead.

Eugene	Francine
$A=1000(1+0.036(10))$	$A=1000(1+0.036)^{10}$
$=\$ 1360$	
	$\$ 1424.29 .29$

Example 2:Determining the future value of an investment with semi-annual compounding
Gerald invested his inheritance of \$20000 in an account that earns 9.2% compounded semi-annually. The interest rate is fixed for 10 years. He plans to use the money for a sport car in 5 to 10 years.

Compare the future value of his investment after 5 years and 10 years. What if his investment were to earn simple interest instead? $\quad A=P(1+i)^{n}$

Syrs. $A=20000\left(1+\frac{0.092}{2}\right)^{5 \times 2} 10$ yrs. $A=20000(1+0.046)^{20410 \times 2}$
$=\$ 31357.89 \quad=\$ 49165.87$

Example 3: Comparing interest on investments with different compounding periods
Hanna wants to invest $\$ 3000$ so that she can renovate her living room in about 3 years; she has the following investment options (annual/semi-annual/monthly/weekly/daily) at 4.8% :

Example 4: Estimating doubling times for investments
Ivan and Jenny invested $\$ 4000$ by purchasing CBs. Ivan's earns 8% compounded annually, while Jenny's earn 9% compounded annually.
a. Estimate the doubling time for each CSB.

b. Verify the estimate by determining the doubling time for each CSB.

Ivan

$$
72 / 8=9 \text { years }
$$

Jenny

$$
72 / 9=8 \text { years }
$$

