1.4-COMPOUND INTEREST: PRESENT VALUE

Goal: Determine the principal or present value of an investment, given its future value and compound interest rate.
Example 1: Determining the present value of investments earning compound interest
Kenneth is 22 years old. He has inherited some money from a relative. Kenneth wants to invest some of the money to buy a home in MapleRidge when he turns 35 . He estimates that he will need about $\$ 22500$ to buy a home.
a. How much does he have to inlest now, at 5.5% compounded annually?

2225000

$$
\begin{array}{ll}
A=P(1+i)^{n} & l^{35-22} \\
2225000=P(1+0.055)^{13^{3}} & P={ }^{2225000} / 2.00577 \ldots \\
2225000=P(2.00577 \ldots) & P=\$ 1109297.52
\end{array}
$$

b. What is the ratio of future vallhe to present value for Kenneth's investment?

$$
\begin{aligned}
& \frac{A}{P}=\frac{2225000}{1109297.52}=2.00577 \ldots \\
& \text { Rule of } 72+2 / 5.5=13.0 \overline{9}
\end{aligned}
$$

c. How would the ratio change if the interest rate increased to 6% but was compounded semi-annually?

$$
\begin{aligned}
A & =p(1+i)^{n} \\
A / P & =(1+i)^{n} \\
& =\left(1+\frac{0.06}{2}\right)^{13 \times 2}=2.156 \ldots
\end{aligned}
$$

Example 2: Determining the present value of an investment that is compounded quarterly
Lana and Matt are computer scientists. They researched the costs to set up a software company. They estimate that $\$ 40000$ will be enough.
They plan to set up the company in 3 years and have invested money at 9.6%, compounded quarterly, to save for it.
a. How much money should they have invested?

$$
\begin{array}{ll}
A=P(1+i)^{n} & \\
40000=P(1+0.096 / 4)^{3 \times 4} & P=40000 /(1.024)^{12} \\
40000=P(1.024)^{12} & =\$ 30092.66
\end{array}
$$

b. How much interest will they earn over the term of their investment?

$$
\begin{aligned}
I=A-P & =40000-30092.66 \\
& =\$ 9907.34
\end{aligned}
$$

Example 3: Determining an unknown interest rate and unknown term

Niko has invested $\$ 14400$ in a Registered Education Savings Plan (RESP). He wants his investment to grow to at least $\$ 50000$ by the time his newborn enters university, in 18 years.
a. What interest rate, compounded annually, will result in a future value of $\$ 50000$? Round your answer to two decimal places.

$$
\begin{array}{ll}
A=P(1+i)^{n} & \sqrt{3.47 \overline{2}}=\sqrt{(1+i)^{18}} \\
50000=14400(1+i)^{18} & 1.0716 \doteq 1+i \\
\frac{50000}{14400}=(1+i)^{18} & 0.0716=i \\
3.47 \overline{2}=(1+i)^{18} & i=7.16 \%
\end{array}
$$

b. Suppose that Niko wants his $\$ 14400$ to grow to at least $\$ 60000$ at the interest rate from part a. How long will this take?

$$
\begin{array}{ll}
60000=14400(1+0.0716)^{n} & \\
\begin{array}{ll}
\frac{60000}{14400}=(1.0716)^{n} & 20.637-18=2.637 \text { years } \\
4.1 \overline{6}=(1.0716)^{n} & =2 \text { years } 8 \text { months }
\end{array} \\
n=\frac{\log (4.1 \overline{6})}{\log (1.0716)}=20.637 \text { years } & \text { (actually it's just } 3 \text { years) } \\
& n=\frac{\log \left(\frac{A}{P}\right)}{\log (1+i)}
\end{array}
$$

