2.5 C2 Ionic Compound November 27, 2023 10:11 AM Science 9 – Chemistry Topic 2.5 – Concept 2: You can determine the formula of an ionic compound from its name. (Read p.158-161) ## **Chemical Formula of Binary Ionic Compounds** - The chemical formula of a binary ionic compound is written with element symbols to identify each ion. - Binary chemical compounds consist of <u>2</u> ions. The first is a <u>positively</u> charged <u>metal</u> ion while the second is a <u>heartively</u> charged <u>non</u> <u>metal</u> ion. - In some cases, a small number called a <u>Subscript</u> is written on the <u>right</u> of one or both symbols. - If there is <u>no</u> subscript, assume the number to be <u>1</u>. - o E.g. Ag₂O means Ag₂O ___. ## **Writing Formulas of Ionic Compounds** - Although ionic compounds are made up of ions, the compound as a whole is electrically __ncutval__. - o E.g. Al₂O₃, KI, MgCl₂ - When writing the formula of a binary ionic compound, you need to first determine the <u>Charge</u> on the ion. (This can be found on a periodic table!) Group 1 metals all form ions wi a charge of 1+. - Common charges: - o Group 1 metals always have a charge of 41 - o Group 2 metals always have a charge of +2. - o Group 13 metals usually have a charge of <u>+3</u>. - \circ Group 16 nonmetals usually have a charge of $\frac{-2}{1}$ - o Group 17 nonmetals usually have a charge of ______. - Some metals can form more than one ion. -> multivalent o E.g. Mn: Mn2t Mn3t Mn4t, Fe: Fe2t Fe3t | | | Group 2 metals all form ions with a charge of 2+. | | | | | | |---|--|---|---------------------------------|---|-----------------------------------|--------------------------------------|-------------------------------------| | | 3 1+ | | / " | iui a ciiaige | 0124. | | | | 2 | Li
Lithium
6.9 | Be
Beryllum
9.0 | | | | hat some me
more than or | | | 3 | 11 1+
Na
Sodium
23.0 | 12 2+
Mg
Magnesium
24.3 | 3 | 4 | 5/ | 6 | 7 | | 4 | 19 1+
K
Potassium
39.1 | 20 2+
Ca
Calcium
40.1 | 21 3+
Sc
Scandium
45.0 | 22 4+
Ti 3+
Titanium
47.9 | 23 5+
V 4+
Vanadium
50.9 | 24 3+
Cr 2+
Chromium
52.0 | 25 2+
Mn 3+
Manganese
54.9 | | 5 | 37 1+
Rb
Rubidium
85.5 | 38 2+
Sr
Strontium
87.6 | 39 3+
Y
Yttrium
88.9 | 40 4+
Zr
Zirconium
91.2 | 41 3+
Nb 5+
Nobium
92.9 | 42 2+
Mo 3+
Molybdenum
95.9 | 43 7+
TC
Technetium
(98) | | | | | | | | | | ## **Examples** | Steps | Calcium chloride | | | |--|----------------------------------|---------------------------------|--| | 1. Identify each <u>ion</u> and its <u>Charge</u> . | Ca ²⁺ CI | Ca Criss-Cross | | | 2. Determine the numbers of <u>loss</u> needed to <u>balance</u> positive charges with negative charges. | Ca ^{2†} C1 ⁻ | Ca ₁ Cl ₂ | | | 3. Use <u>Subscripts</u> to write the formula. Remember to write the <u>Metal</u> ion first. *Do not include a subscript if the subscript is " <u>1</u> ". | CaCl ₂ | CaCl ₂ | | | Steps | Aluminum sulfide | | | |---|------------------|---|--------------------------------| | Identify each ion and its charges | | | Al@th | | Determine the numbers of ions needed to balance positive charges with negative charges. | Al 31
Al 31 | S ²⁻
S ²⁻
S ²⁻ | Al ₂ S ₃ | | 3. Use subscripts to write the formula. Remember to write the metal ion first. *Do not include a subscript if the subscript is "1". | 6+
Al | <u>6-</u>
₂ S ₃ | Al ₂ S ₃ | Maghesium Sulphide Mg252 → Mg,S, → MgS $A_2B_6 \rightarrow AB_3$ WB P.94 - 95 \: HW | _ | | WB P.94 - 95 | \:Hw | |-----|----------------------------|-----------------------------------|--| | | Name of Compound | lons | Formula | | | sodium bromide | Na Br | Na Br | | | aluminum chloride | 13+ CF | Al Cl3 | | | magnesium oxide | Mg ²⁺ O ²⁻ | Mg2O2 -> MgO | | | barium iodide | | Ba I ₂ | | - | lithium phosphide | Li + p3- | LiaP | | - | beryllium oxide | Ro 2+ 02- | Be O | | | calcium bromide | Ca ^{2t} Br ^{l-} | Ca Brz | | _ | potassium iodide | K+ I-1 | KI | | - | radium nitride | Ra ^{2t} N ³⁻ | Ra3N2 | | | magnesium sulfide | Mg ^{2t} S ² | MgS | | | aluminum nitride mct H | Alst N3- | AĬN | | × | barium hydride non metal H | Ba ^{2t} H | Ba H ₂ | | - | potassium fluoride | K ⁺ F - | KF | | - | strontium phosphide | Sr ^{2t} p ³⁻ | Sr ₃ P ₂
Cs ₂ Se | | - | cesium selenide | Cs It Se ²⁻ | Cs 2 Se | | | zinc oxide | Zn^{2t} O^{2-} | ZnO | | - | cesium phosphide | Cs1+ P3- | Cs ₃ P | | _ | beryllium hydride | Be ^{2t} H | Be H ₂ | | - | lithium chloride | Li H Cl- | LiCl | | | magnesium iodide | Mg ^{2t} I ¹⁻ | MgI2 | | - | zinc fluoride | Zn2t F- | ZnF ₂ | | - | silver sulfide | Aglt S2- | Ag ₂ S | | _ ~ | beryllium selenide | Be ^{2t} Se ² | BeSe | | * | gallium carbide | Ga 3+ C4- | Ga 4C3 | | - | rubidium nitride | KPH N3- | Rb ₃ N | | - | *calcium carbide C4- | Ca ²⁺ C ⁴⁻ | Ca4C2 - (Ca2C) | | - | C ⁴⁻ | Caci C'4 | (a4C2 -> (Ca2C) |