2.5 C3 Multivalent Metals November 29, 2023 9:41 AM Science 9- Chemistry Topic 2.5 - Concept 3: Multivalent metals form more than one ion. (Read pages 162-163) Multivalent metals – metals that form more than _____one e.g. copper can form ions with 2 + or 4 + charge. To distinguish between the ions a Roman numeral after the <u>hame</u> of the metal. Cu^{2+} e.g. Copper (I) or <u>Copper (I)</u> *Are all transition metals multivalent? No c 2+ Naming and writing formulas for Ionic compounds containing multivalent metals. - When writing the formula for a multivalent metal follow the same process as for the binary compounds - Since you can't tell the charge on the metal just by looking at the periodic table you should look at the Roman Numeral in the name | Metal Ion Charge | Roman Numeral | Metal Ion Charge | Roman Numeral | |------------------|---------------|------------------|---------------| | 1+ | I | 5+ | 又 | | 2+ | I | 6+ | <u>VI</u> | | 3+ | Ш. | 7+ | VII | | 4+ | TV | 8+ | VIII | **Writing Formulas** | Steps | chromium(<mark>III</mark>) chloride | |---|---------------------------------------| | 1. Identify each <u>Ton</u> and its <u>Charge</u> . | Cr3+ CIE | | Determine the numbers of fon needed to balance positive charges with negative charges. | Gr Cl CriCl3 | | 3. Use <u>Subscripts</u> to write the formula. Remember to write the <u>metal</u> ion first. | CrC13 | | Writing Formulas using "Criss-Cross" Method | | | Sn or Sn Tin | |--|--|----------------------------------|--------------------------------| | Steps | | Iron(<mark>III</mark>) nitride | tin(IV) oxide | | Write the formula of the positive ion second. In positive ion name is always negative ion name is written. | the given name, the written first, and | Fe A (8) | Sn(4+) (2-5) | | 2. "Criss-cross" the numbers on the ions. If no number i purpose of criss-crossing to ion charge equal to the over | s shown, use a 1 . The make the overall + | Fe 3 N3 | Sn ₂ O ₄ | | 3. "Clean-up" the formula, in a) Omit the superscript of b) If possible reduce subscommon number (usua) c) Omit any subscript whi | narges and numbers cript by dividing by ally 2) | Fe N | Sn O ₂ | ## **Practice Problems: Chemical Formula Writing** | Name of Compound | Ions | Formula | |-------------------------|--|---------| | nickel(II) chloride | Ni ²⁺ Cl | | | copper(I) sulfide | Cu^{1+} S^{2-} | | | lead(IV) iodide | Pb4+ II- | | | tin(IV) fluoride | Sn4+ F1 | | | mercury(I) bromide | Hg It Br I- | | | copper (II) oxide | Cu^{2+} O^{2-} | | | chromium(III) selenide | Cr ³⁺ Se ²⁻ | | | gold(I) iodide | Au ¹⁺ I ¹⁻ | | | manganese(II) nitride | Mn ²⁺ N ³⁻ | | | cobalt(III) phosphide | Co3+ p3- | | | iron(III) chloride | Fe ³⁺ Cl | | | lead(II) bromide | Pb ^{2t} Br ¹⁻ | | | tin(IV) iodide | Sn 4+ II- | | | mercury(II) fluoride | Hg 2+ F - | | | platinum(IV) oxide | Pt 4+ 02- | | | manganese(III) chloride | Mn ^{3t} Cl | | | chromium(II) nitride | Cr 2t N 3- | | | gold(III) sulfide | Au ³⁺ S ²⁻ | | | cobalt(II) phosphide | Au ³⁺ S ²⁻
Co ²⁺ P | | | iron(II) selenide | | | | mercury(I) sulfide | | | | gold(III) bromide | | | | bismuth(V) hydride | | | | uranium(VI) phosphide | | | | Name: | Date: | |----------|-------| | 14dille: | Date: | Science 9- Chemistry Topic 2.5 - Concept 3: Naming Compounds with Multivalent ions. (Read pages 162-163) | <u> </u> | beliefice 5° Chemistry Topic 2:5° Concept 5: Naming Compounds with Multivalent Ions: (Nead pages 102-105) | | | | | |----------|--|--------------------------------|------------------|----------------|-----------------| | | Steps | Fe ₂ O ₃ | | Sn2t SnS2 | | | 1. | Identify the $\underline{\text{Ion}}$. | Fe ³⁺ | 02- | S _n | 52- | | 2. | Determine the $\underline{\text{ratio}}$ of ions in the compound. | Fe ^{3t} | O ²⁻ | | S ²⁻ | | 3. | The positive charges and negative charges must be equal in magnitude for the compounds to be electrically neutral. | 6+ = | 0 ² - | +4 | 4- | | 4. | Write the name of the compound using a Roman numeral to indicate the charge of the metal ion. | Iron (II) | Oxide | Tin (IV) S | ulfide | Naming Compounds using the "Reverse Criss-Cross" Method | training compounds using the interested cross cross in | Tictilou | | |--|-------------------------------|--------------------------| | Steps | K₂S _I | MnS | | 1. "Un-criss-cross" the subscripts back into the superscripts with charges. | K ₂ % ₁ | Mn S - Mn2 S2 | | 2. Then look at the NON-METAL ION CHARGE after the "un-criss-cross", if it is NOT CORRECT , then multiply the superscripts by the proper number so the non-metal ion ends up with the right charge. The resulting charge on the metal ion is now correct! | K See it this Axist!! | Mn 1 S 1- > Wrong Change | | 3. Write the name of the compound. | Potassium Sulfide | Mangenese (II) Sulfide | | | Conly 1 time | | | only I type | | | | | | |--|--|--------------------------------|------------------|--|--| | Formula | Name of Compound | Formula | Name of Compound | | | | MnS | | | | | | | | | AuBr | | | | | PbBr ₂
Pb ²⁺ Br | Lead (II) Bromide | PtO | | | | | Pb ₃ N ₂ | | Fe ₂ S ₃ | | | | | Au ₂ O ₃ | | SnO | | | | | FeI ₂ | | PbCl ₂ | | | | | Sn ₃ P ₄ | | PbO ₂ | | | | | Cu ₂ S | | Cu ₂ O | | | | | SnCl ₂ | | FeSe | | | | | Ni [†] Ni _P | Ni ³⁺
p ³⁻ Nickel (III) Phosphide | PtO ₂ | | | | | CrF ₃ | | CuO | | | | | CuCl ₂ | | NiF ₂ | | | | | Vhich method do you prefer? | | | | |-----------------------------|--|--|--| | | | | |