Printout

October 4, 2022 1:37 PM

Science 9 - Physics Topic 3.3 Concept 2-3: Conductors, Current and Resistance

Concept 2: Conductor vs insulators

- Eletrons can move through some material easier than others and it depends on the material's \qquad
- Conductivity is an indication of how easily charges travel through a material
- Electrons can move through almost all \qquad (conductors); can
 move through some metals more easily than others
- The higher the conductivity of a material, the more easily electrons can move through

Concept 3: Moving electron makes Electric Current

Chemical energy from a Source (cell or battery) causes charges to move through a COnductor (wires), carrying energy to a load/ electrical device(light)

- The Current (I) of running in a wire is the amount of charge (Coulomb) passing through in one second. In short: Current is the rate of movement of electrons

- Symbol: I (in the past we called it "Current Intensity")
- Units: Ampere (A) dist $=2 \mathrm{~km}$
- Ex) the equation $I=2 \mathrm{~A}$ means that the current (I) is two Ampere
- a current measurement of [2 A] means there is 2 Coulomb__ of Electrons is passing by the

Figure 1: André-Marie Ampère One point in the circuit every second.

Direction of Current (flow of electron)

An electric cell (battery) uses a chemical reaction to create a "potential difference" between the ends of the battery.

- That means that one end of the cell becomes \qquad positive and the other becomes \qquad negative.
When a circuit connects the two ends of the cell, current flows through the wire.
- This is because electrons are \qquad repelled by the negative end of the cell and attracted to the positive end.

Conventional Current

- When scientists discovered electric current, Physicists initially thought Positive charges were moving in the wire.
- This is called conventional current
- defined as the direction positive charges move in a circuit
- from positive to negative
\qquad
- we now know this isn't the correct direction. Because electron was finally discovered by English physicist J.J. Thomson in 1897 . And it turns out Electron is \qquad negatively charged. ^。 so the "correct" direction of electric current should be negative to positive

- Defibrillator
- pacemaker
- TENS - Transataneous Electrical Nerve Stimulation.
- EMS - Electrical Muscle Stimulation.
- other

