Printout

October 4, 2022

Science 9 – Physics Topic 3.3 Concept 2-3: Conductors, Current and Resistance

Concept 2: Conductor vs insulators

- Eletrons can move through some material easier than others and it depends on the material's Conductivity.
- Conductivity is an indication of how easily charges travel through a material
 - Electrons can move through almost all **metal** (conductors); can move through some metals more easily than others

insulator

Most metals, water with impulitiy

called a conductor.

A material that Electrons can travel edsily is

We use copper for electric wiring because it has high Conductivity and Low cost.

Conductor

• Wood, <u>rubber</u>, plastic, <u>air</u>, and <u>pure</u> water

· (extending) - if electrons carrie enough voltage (Energy), they would be able to go throught any material. There is no perfect __ insulator‼

Concept 3: Moving electron makes Electric Current

Chemical energy from a <u>Source</u> (cell or battery) causes charges to move through a <u>Conductor</u> (wires), carrying energy to a load/ electrical device(light)

The Current (I) of running in a wire is the amount of charge (Coulomb) passing through in one second. In short: Current is the rate of movement of electrons

• Symbol: ____ (in the past we called it "Current Intensity")

• Units: Ampere (A) dist = 2 km

• Ex) the equation I = 2A means that the current (I) is two Ampere

• a current measurement of [2 A] means there is 2 <u>Coulomb</u> of Electrons is passing by the one point in the circuit every second.

Figure 1: André-Marie Ampère

Direction of Current (flow of electron)

An electric cell (battery) uses a chemical reaction to create a "potential difference" between the ends of the battery.

That means that one end of the cell becomes positive and the other becomes Negative.

When a circuit connects the two ends of the cell, current flows through the wire.

• This is because electrons are <u>repelled</u> by the negative end of the cell and <u>attracted</u> to the positive end.

Conventional

Current

Conventional Current

- When scientists discovered electric current, Physicists initially thought
 <u>positive</u> charges were moving in the wire.
- This is called conventional current
 - defined as the direction __positive_ charges move in a circuit
 - · from positive to <u>negative</u>
 - we now know this isn't the correct direction. Because electron was finally discovered by English physicist J.J. Thomson in 1897. And it turns out Electron is 100 atively charged. ^_^
 - so the "correct" direction of electric current should be negative to positive

Example

- · Defibrillator
- · pacemaker
- TENS Transutaneous Electrical Nerve Stimulation.
- · EMS Electrical Muscle Stimulation.
- · other