6.4 - Modelling Data with a Curve of Best Fit

Monday, December 6, 2021 10:08 AM

6.4 -Modelling...

L

Foundations of Mathematics 12 - 6.4

6.4 - MODELLING DATA WITH A CURVE OF BEST FIT

Curve of best fit

Curve of best fit is a curve that best approximates the trend on a scatter plot.

Use Technology to Solve a Quadratic Problem

Example 1: The concentration (in milligrams per litre) of a medication in a patient's blood is measured as time passes. Susan has collected the following data and is attempting to express the concentration as a polynomial function of time. | Stat | | Edit |

	Time (T hours)	0	1.5	3	4.5	6	7.5	9			
•	Concentration (C mg/L)	0	26.9	41.2	47.8	46.0	36.8	20.3			

Zoom Stat Var -> Y-Var -> Function a. On a graphing calculator, enter the data in two lists. Time in L_1 and Concentration in L_2 . Create a scatter plot of the data and use the quadratic regression feature to determine the polynomial function, $C = aT^2 + bT + c$, that best fits the data. Round the parameters a, b, and c to 2 decimal places.

The doctor has decided that the patient needs a second dose of medication when the concentration in the blood is less than 10 mg/L. If the first dose of medication was given at 9:00am, at what time should the second dose

Example 2: Consider the data in the table. Use technology to create a scatter plot and to determine the equation of $\frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{10}} \times \frac{\sqrt{2}}{\sqrt{10}} = \frac{2}}{\sqrt{10}} = \frac{\sqrt{2}}{\sqrt{10}} = \frac{\sqrt{2}}{\sqrt{$

ti	he line of best f	It. Quad	Rey Lip	L29 Y1	y= 0.	14× - 11.	2x + 14,2	S
x	0	1.5	3.3	5.1	7.4	8.6	10.0	
у	19.5	10.3	3.4	1.6	6.2	16.1	20.3	

2nd -> Cal -> Value.

Determine, to the nearest tenth, the value of y when x = x = x = 1 b. Determine, to the nearest tenth, the value of x when x = x = x = 1 b. Determine, to the nearest tenth, the value of x when x = x = x = 1 b.

$$\chi_1 = 1.59$$
 $\chi_2 = 8.03$

Foundations of Mathematics 12 - 6.4

Technology uses polynomial regression to determine the curve of best fit. Polynomial regression results in an equation of a curve that balances the points on both sides of the curve. A curve of best fit can be used to predict values that are not recorded or plotted. Predictions can be made by reading values from the curve of best fit on a scatter plot or by using the equation of the curve of best fit.

Use Technology to Solve a Cubic Regression Function

Example 3: The following table shows the average retail price of gasoline, per litre, for a selection of years in a 30year period beginning in 1979.

Years after 1979		Price of Gas (¢/L)	Years after 1979	Price of Gas (¢/L		
1979	0	21.98	17	58.52		
1980	1	26.18	20	59.43		
	2	35.63	22	7 <mark>0.5</mark> 6		
3 4 7 8 9		43.26	23	70.00 74.48		
		45. 92	24			
		45.78	25	82.32 92.82 97.86 102.27		
		47.95	26			
		47.53	27			
		57.0 5	<mark>2</mark> 8			
	14	54.18	29	115.29		

Statistics Canada

a. Use technology to graph the data as a scatter plot. What polynomial function could be used to model the data?

Stut -> Calc -> 6: Cabic Reg L1, L2, Y1

b. Determine the cubic regression equation that models the data. Use your equation to estimate the average price

of gas in 1984 and 1985.

$$|984 - |979 = ||6||$$
 $||785 - ||978 = ||6||$ $||785 - ||978 = ||978 = ||978 - ||978 = ||978 - ||978 = ||978 - ||978 = ||978 - ||978 = ||978 - ||978 = ||978 - ||978 = ||978 - ||978 = ||978 - ||978 = ||978 - ||978 = ||978 - ||978 = ||978 = ||978 = ||978 = ||97$

c. Estimate the year in which the average price of gas was 56.0¢/L.

$$\frac{1}{2} = 56 \qquad x = 16.5 \qquad \approx 16 \text{ years}$$

$$\frac{\text{aft. 1979}}{1995}$$

$$\frac{1979}{1995}$$

Try

5. Consider the data in the table. Create a scatter plot from the data using a graphing calculator.

х	0	5	10	15	20	25	30	35	40	45	50
у	120	102	83	74	67	64	62	54	45	31	10

a. Use the cubic regression feature of a calculator to determine a cubic function that models the data. Round to three decimal places.

$$y = -0.00234 \times^3 + 0.178 \times^2 -5.275 \times + |21.30|$$

b. Use the cubic regression equation to determine the value of x when y = 90.

c. Use the linear regression feature of a calculator to determine a the function that models the data. Round to three decimal places.

$$y = -1.805x + 109.864$$

d. Use the linear regression equation to determine the value of x when y = 90.

e. Which model appears to be the better for the data?