1.1 - SIMPLE INTEREST

Goal: Solve problems that involve simple interest.
Example 1:Solving a simple interest problem
Aaron is 18 years old and needs money to pay for college. When he was born, his grandparents bought him a $\$ 500$ Canada Savings Bond (CSB) with a term of 10 years. They chose a CSB as an investment because they like the security of loaning money to the government. The interest earned was determined using a fixed interest rate of 6% per year on the original investment and was paid at the end of each year until Aaron's $10^{\text {th }}$ birthday.

Determine the simple interest earned on the principal and the future value of the investment when it reaches maturity.

To understand the question, we need to know:
term: \qquad
interest: \qquad
fixed interest rate: \qquad
simple interest: \qquad
principal: \qquad
future value: \qquad
maturity: \qquad
To answer the question, we will organize our calculation into a table like the one below:

Year	Value of Investment at Start of Year (\$)	Simple Interest Earned Each Year (\$)	Accumulated Interest (\$)	Value of Investment at End of Year (\$)
0				
1				
2				
3				
4				

Note that the interest does not change in a scenario involving simple interest at a fixed interest rate. So instead we can simply calculate a year's interest and multiply it by the number of years in the term, or:
$i=P r t$

Adding the principal allows us to determine the future value of the investment, A
$A=P+P r t=P(1+r t)$

Example 2: Representing the growth of a simple interest investment

Betty invested $\$ 15000$ in a savings account. Betty earned a simple interest rate of 8%, paid semi-annually on her investment. She intends to hold the investment for 3.5 years, when she will use the money to buy a car. Determine the value of the investment at each half year until she withdraws the money.

Value of Investment over Time

Year	Value of Investment (\$)
0	
0.5	
1	
1.5	
2	
2.5	
3	
3.5	

Example 3: Determining the duration of a simple interest investment
Charles invested his savings of $\$ 5000$ at 6% simple interest, paid annually.
How long will it take for the future value of the investment to grow to $\$ 6500$?

What is Charles rate of return?

rate of return: \qquad

Example 4: Determining the rate of interest n a simple interest investment

Danielle invested $\$ 25000$ in a simple interest CSB that paid interest annually. If the future value of the CSB is \$29 375 at the end of the term, what interest rate does the CSB earn? Given that rate, how much would the investment be worth if she withdrew after four years instead?
$=$

Assignment: p. 14 \#4-8, 11-14

1.2 \& 1.3(i) - COMPOUND INTEREST: FUTURE VALUE

Goal: Compare simple interest with compound interest.

Example 1: Developing a compound interest formula

Both Eugene and Francine received a $\$ 1000$ prize in a math contest.

- Eugene bought a $\$ 1000$ simple interest GIC (guaranteed investment certificate) with his prize money. It has a 5 -year term and earns 3.6% paid annually.
- Francine bought a $\$ 1000$ compound interest GIC (guaranteed investment certificate) with her prize money. It has a 5-year term and earns 3.6\% paid annually.
compound interest: \qquad

Compare the future values of Eugene's and Francine's investments at maturity.
Simple Interest:
Compound Interest:

Year	Value
1	
2	
3	
4	
5	

The formula for compound interest:

$$
\begin{array}{ll}
A=P(1+i)^{n} & A \\
& P \\
i \\
& n
\end{array}
$$

Calculate the future values of Eugene's and Francine's investment if the term is 10 years instead.

Example 2:Determining the future value of an investment with semi-annual compounding
Gerald invested his inheritance of $\$ 20000$ in an account that earns 9.2% compounded semi-annually. The interest rate is fixed for 10 years. He plans to use the money for a sport car in 5 to 10 years.

Compare the future value of his investment after 5 years and 10 years. What if his investment were to earn simple interest instead?

Example 3: Comparing interest on investments with different compounding periods
Hanna wants to invest $\$ 3000$ so that she can renovate her living room in about 3 years; she has the following investment options (annual/semi-annual/monthly/weekly/daily) at 4.8\%:

Principal (\$)	3000	3000	3000	3000	3000
Interest Rate	0.048	0.048	0.048	0.048	0.048
Periods / Year	1	2	12	52	365
Value at End of Year		3000	3000	3000	3000
0					3000
1					
2					
3					

Example 4: Estimating doubling times for investments
Ivan and Jenny invested $\$ 4000$ by purchasing CSBs. Ivan's earns 8% compounded annually, while Jenny's earn 9\% compounded annually.
a. Estimate the doubling time for each CSB.
b. Verify the estimate by determining the doubling time for each CSB.

Assignment: read p. 29; p. 19 \#1 - 3; p. 30 \#3-11 (odds)

1.4 - COMPOUND INTEREST: PRESENT VALUE

Goal: Determine the principal or present value of an investment, given its future value and compound interest rate.
Example 1: Determining the present value of investments earning compound interest
Kenneth is 22 years old. He has inherited some money from a relative. Kenneth wants to invest some of the money to buy a home in Maple Ridge when he turns 35. He estimates that he will need about $\$ 225000$ to buy a home.
a. How much does he have to invest now, at 5.5% compounded annually?
b. What is the ratio of future value to present value for Kenneth's investment?
c. How would the ratio change if the interest rate increased to 6% but was compounded semi-annually?

Example 2: Determining the present value of an investment that is compounded quarterly
Lana and Matt are computer scientists. They researched the costs to set up a software company. They estimate that $\$ 40000$ will be enough.
They plan to set up the company in 3 years and have invested money at 9.6%, compounded quarterly, to save for it.
a. How much money should they have invested?
b. How much interest will they earn over the term of their investment?

Example 3: Determining an unknown interest rate and unknown term
Niko has invested $\$ 14400$ in a Registered Education Savings Plan (RESP). He wants his investment to grow to at least $\$ 50000$ by the time his newborn enters university, in 18 years.
a. What interest rate, compounded annually, will result in a future value of $\$ 50000$? Round your answer to two decimal places.
b. Suppose that Niko wants his $\$ 14400$ to grow to at least $\$ 60000$ at the interest rate from part a. How long will this take?

1.5 - INVESTMENT INVOLVING REGULAR PAYMENTS

Goal: Determine the future value of an investment that earns compound interest involving regular payments.
Example 1: Determining the future value of an investment involving regular deposits.
Darva is saving for a trip to Australia in 5 years. She deposits $\$ 500$ into her savings account at the end of each 6month period from what she earns as a server. The account earns 3.8%, compounded semi-annually. How much money will be in the account at the end of 5 years? How much of this money will be earned interest?
$\mathrm{N}=$

$\mathrm{I} \%=$

PD =

PAT $=$

FD =
$\mathrm{P} / \mathrm{Y}=$
$\mathrm{C} / \mathrm{Y}=$

Example 2: Comparing a regular payment investment with a single payment investment.
Adam made a $\$ 200$ payment at the end of each year into an investment that earned 5%, compounded annually.
Blake made a single investment at 5%, compounded annually. At the end of 5 years, their future values were equal.

1. What was their future value?
2. What principal amount did Blake invest 5 years ago?
3. Who earned more interest? Why?

$\mathrm{N}=$	$\mathrm{N}=$
$\mathrm{I} \%=$	$\mathrm{I} \%=$
$\mathrm{PV}=$	$\mathrm{PV}=$
$\mathrm{PMT}=$	$\mathrm{PMT}=$
$\mathrm{FV}=$	$\mathrm{FV}=$
$\mathrm{P} / \mathrm{Y}=$	$\mathrm{P} / \mathrm{Y}=$
$\mathrm{C} / \mathrm{Y}=$	$\mathrm{C} / \mathrm{Y}=$

Example 3: Determining the interest rate of a regular payment investment.
Jeremiah deposits $\$ 750$ into an investment account at the end of every 3 months. Interest is compound quarterly, the term is 3 years, and the future value is $10059.07 /$ What annual rate of interest does Jeremiah's investment earn?

$\mathrm{N}=$	$\mathrm{FV}=$
$\mathrm{I} \%=$	$\mathrm{P} / \mathrm{Y}=$
$\mathrm{PV}=$	$\mathrm{C} / \mathrm{Y}=$
$\mathrm{PMT}=$	

Example 4: Determining the regular payment amount of an investment.
Celia wants to have $\$ 300000$ in 20 years so that she can retire. Celia has found a trust account that earns a fixed rate of 10.8%, compounded annually.
a. What regular payments must Celia make at the end of each year to meet her goal of $\$ 300000$?
b. How much interest will she earn over the 20 years?

$\mathrm{N}=$	$\mathrm{FV}=$
$\mathrm{I} \%=$	$\mathrm{P} / \mathrm{Y}=$
$\mathrm{PV}=$	$\mathrm{C} / \mathrm{Y}=$
$\mathrm{PMT}=$	

Example 5: Determining the term of a regular payment investment.
On Luis's $20^{\text {th }}$ birthday, he started making regular $\$ 1000$ payments into an investment account at the end of every 6 months. He wants to save for a down payment on a home. His investment earns 3.5%, compounded semi-annually. At what age will he have more than $\$ 18000$?

$\mathrm{N}=$	$\mathrm{FV}=$
$\mathrm{I} \%=$	$\mathrm{P} / \mathrm{Y}=$
$\mathrm{PV}=$	$\mathrm{C} / \mathrm{Y}=$
$\mathrm{PMT}=$	

Assignment: p. 55 \#1-17 (odds)

1.6 - SOLVING INVESTMENT PORTFOLIO PROBLEMS

Goal: Analyze, compare, and design investment portfolios that meet specific financial goals.
Example 1: Determining the future value and doubling time of an investment portfolio.
Phyllis started to build an investment portfolio for her retirement. She purchased a $\$ 500$ Canada Savings Bond (CSB) at the end of each year for 10 years. The first five CSBs earned a fixed rate of 4.2%, compounded annually. The next five CSBs earned a fixed rate of 4.6% compounded annually. Three years ago, she also purchased a $\$ 4000$ GIC that earned 6%, compounded monthly.
a. What was the value of Phyllis's portfolio 10 years after she started to invest?
b. Phyllis found a savings account that earned 4.90%, compounded semi-annually. She redeemed her portfolio and invested all the money in the savings account. About how long will it take her to double her money?

```
N =
I% =
PV =
PMT =
FV = 。
P/Y =
C/Y =
N=
I% =
PV =
PMT =
FV =
P/Y =
C/Y =
N=
I% =
PV =
PMT =
FV =
P/Y =
C/Y =
```

Example 2: Comparing the rates of return of two investment portfolios.
Jason and Malique are each hoping to buy a house in 10 years. They want their money to grow so they can make a substantial down payment.

```
Jason's portfolio:
```

* A 10-year \$2000 GIC that earns 4.2\%, compounded semi-annually
- A savings account that earns 1.8%, compounded weekly, where he saves $\$ 55$ every week
- A 5-year $\$ 4000$ bond that earns 3.9%, compounded quarterly, which he will reinvest in another bond at an interest rate of 4.1%
$\mathrm{N}=$
$\mathrm{I} \%=$
$\mathrm{PV}=$
PMT $=$
$\mathrm{FV}=$
$\mathrm{P} / \mathrm{Y}=$
$\mathrm{C} / \mathrm{Y}=$
$\mathrm{N}=$
$\mathrm{I} \%=$
$\mathrm{PV}=$
$\mathrm{PMT}=$
$\mathrm{FV}=$
$\mathrm{P} / \mathrm{Y}=$
$\mathrm{C} / \mathrm{Y}=$

$\mathrm{N}=$	$\mathrm{N}=$	$\mathrm{N}=$
$\mathrm{I} \%=$	$\mathrm{I} \%=$	$\mathrm{I} \%=$
$\mathrm{PV}=$	$\mathrm{PV}=$	$\mathrm{PV}=$
$\mathrm{PMT}=$	$\mathrm{PMT}=$	$\mathrm{PMT}=$
$\mathrm{FV}=$	$\mathrm{FV}=$	$\mathrm{FV}=$
$\mathrm{P} / \mathrm{Y}=$	$\mathrm{P} / \mathrm{Y}=$	$\mathrm{P} / \mathrm{Y}=$
$\mathrm{C} / \mathrm{Y}=$	$\mathrm{C} / \mathrm{Y}=$	$\mathrm{C} / \mathrm{Y}=$

$\mathrm{N}=$
$\mathrm{N}=$
$\mathrm{I} \%=$
$\mathrm{PV}=$
PMT =
$\mathrm{FV}=$
$\mathrm{P} / \mathrm{Y}=$
$\mathrm{C} / \mathrm{Y}=$
$\mathrm{N}=$
I\% =
$\mathrm{PV}=$
PMT $=$
$\mathrm{FV}=$
$\mathrm{P} / \mathrm{Y}=$
$\mathrm{C} / \mathrm{Y}=$

Example 3: Designing and adjusting an investment portfolio to meet a financial goal.

Stan plays in a band. Next year, he wants to have enough money to buy a new guitar. The new guitar costs $\$ 1750$, including taxes and shipping. Stan works part time and can afford to save $\$ 15$ every week. As well, he has $\$ 300$ left from his summer job. He needs an investment portfolio so that he can save money to buy the guitar in a year.
a. Why might Stan include a GIC and a high-interest savings account in his portfolio?
b. If the GIC earns 5%, compounded annually, and the savings account earns 2.9%, compounded weekly, will he have enough money in a year? If not how much does he have to save each week?
$\mathrm{N}=$
$\mathrm{I} \%=$
PV =
PMT $=$
$\mathrm{FV}=$
$\mathrm{P} / \mathrm{Y}=$
$\mathrm{C} / \mathrm{Y}=$
$\mathrm{N}=$
I\% =
PV =
PMT $=$
$\mathrm{FV}=$
$\mathrm{P} / \mathrm{Y}=$
$\mathrm{C} / \mathrm{Y}=$

Assignment: p. 65 \#2-4, 6, 8, 9

CHAPTER 1 REVIEW

1. Hal invested $\$ 40000$ at an interest rate of 6%, compounded annually. He wants to know how long it will take for the investment to double.
a. Estimate the doubling time. Verify your answer.
b. How long would it take for the investment to double if the interest was simple

2 Val has $\$ 12000$ and wants it to grow to $\$ 50000$. She has narrowed the possibilities to the following two investment options:
a. 6% compound semi-annually
b. 5.1% compounded quarterly

Which option should she choose? Why?

$\mathrm{N}=$	$\mathrm{FV}=$	$\mathrm{N}=$	$\mathrm{FV}=$
$\mathrm{I} \%=$	$\mathrm{P} / \mathrm{Y}=$	$\mathrm{I} \%=$	$\mathrm{P} / \mathrm{Y}=$
$\mathrm{PV}=$	$\mathrm{C} / \mathrm{Y}=$	$\mathrm{PV}=$	$\mathrm{C} / \mathrm{Y}=$
$\mathrm{PMT}=$		$\mathrm{PMT}=$	

3. Warren started investing when he was 5 years old. He deposited $\$ 5$ from his allowance at the end of every month into a savings account that earned 5.80%, compounded monthly. He did this until he was 25 years old.
a. How much did he invest altogether? What is the current value of his investment at age 25? What is his rate of return?
$\mathrm{N}=$
$\mathrm{I} \%=$
$\mathrm{PV}=$
PMT $=$
FV =
$\mathrm{P} / \mathrm{Y}=$
$\mathrm{C} / \mathrm{Y}=$
b. Suppose that Warren had wanted his investment to have the same value as in part a) at age 25 , but had started investing when he was 20 . What would his monthly payments have been?
$\mathrm{N}=$
$\mathrm{I} \%=$
PV =
PMT =
FV =
$\mathrm{P} / \mathrm{Y}=$
$\mathrm{C} / \mathrm{Y}=$
4. Both Alex and Jamie have an investment portfolio.
a. What is the current value of each portfolio?
b. Who has the greater rate of return? Explain.

Alex's portfolio:

*• A 10-year $\$ 5000$ GIC, purchased 9 years ago, that earns 2.6%, compounded annually
*• A 5-year \$2000 CSB, purchased 4 years ago, that earns 3.1%, compounded semiannually
*- A savings account at 1.4%, compounded weekly. into which he has been making weekly deposits of $\$ 15$ for 5 years

Jamie's portfolio:

- A 10 -year $\$ 3000$ bond, purchased 9 years ago, that earns simple interest at 2.7%
- A 3-year $\$ 700$ CSB. Purchased 3 years ago. that earns 2.8%, compounded semiannually
- A high-interest savings account, at 1.7%, compounded monthly, into which she has been making monthly deposits of $\$ 100$ for 6 years

```
N =
I% =
PV =
PMT =
FV =
P/Y =
C/Y =
N =
I% =
PV =
PMT =
FV =
P/Y =
C/Y =
N =
I% =
PV =
PMT =
FV =
P/Y =
C/Y =
```

Assignment: p. 71 \#1, 2, 4, 6-8, $10-12$

