\qquad
Date \qquad
Goal: Understand sets and set notation.

1. set: A collection of distinguishable objects; for example, the set of whole numbers is $W=\{0,1,2,3, \ldots\}$.
2. element: An object in a set; for example, 3 is an element of D, the set of digits.
3. universal set: A set of all the elements under consideration for a particular context (also called the sample space); for example, the universal set of digits is $D=\{0,1,2,3,4,5,6,7,8,9\}$.
4. subset: A set whose elements all belong to another set; for example, the set of odd digits, $O=\{1,3,5,7,9\}$, is a subset of D, the set of digits. In set notation, this digits, $O=\{1,3,5,7,9\}$, is a subship is written as: $O \subset D$.
5. complement: All the elements of a universal set that do not belong to a subset of it; for example, $O^{\prime}=\{0,2,4,6,8\}$ is the complement of $O=\{1,3,5,7,9\}$, a subset of the universal set of digits, D. The complement is denoted with a prime sign, O.
6. empty set: A set with no elements; for example, the set of odd numbers divisible by 2 is the empty set. The empty set is denoted by $\}$ or \emptyset.
7. disjoint: Two or more sets having no elements in common; for example, the set of even numbers and the set of odd numbers are disjoint.
8. finite set: A set with a countable number of elements; for example, the set of even numbers less than $10, E=\{2,4,6,8\}$, is finite.
9. infinite set: A set with an infinite number of elements; for example, the set of natural numbers, $N=\{1,2,3, \ldots\}$, is infinite.
10. mutually exclusive: Two or more events that cannot occur at the same time; for example, the Sun rising and the Sun setting are mutually exclusive events.

INVESTIGATE the Math

Jasmine is studying the provinces and territories of Canada. She has decided to categorize the provinces and territories using sets .

How can Jasmine use sets to categorize Canada's regions?
A. List the elements of the universal set of Canadian provinces and territories, C.
B. One subset of C is the set of Western provinces and territories, W. Write W in set notation.

C. The Venn diagram above represents the universal set, C. The circle in the Venn diagram represents the subset W. The complement of W is the set W^{\prime}
i. Describe what W^{\prime} contains.
ii. Write W^{\prime} in set notation.
iii. Explain what W^{\prime} represents in the Venn diagram.
D. Jasmine wrote the set of Eastern provinces as follows: $E=\{\mathrm{NL}, \mathrm{PE}, \mathrm{NS}, \mathrm{NB}, \mathrm{QC}, \mathrm{ON}\}$ Is E equal to W^{\prime} ? Explain
F. Explain why you can represent the set of Canadian provinces south of Mexico by the empty set
G. Consider sets C, W, W^{\prime}, and T. List a pair of disjoint sets. Is there more than one pair of disjoint sets?
H. Complete your Venn diagram by listing the elements of each subset in the appropriate circle.

E. List T, the set of territories in Canada. Is T a subset of C ? Is it a subset of W, or a subset of W^{\prime} ? Explain using your Venn diagram.

Example 1: Sorting numbers using set notation and a Venn diagram (p.148)
a) Indicate the multiples of 5 and 10 , from 1 to 500 , using set notation. List any subsets.
b) Represent the sets and subsets in a Venn diagram.

Example 2: Determining the number of elements in sets (p. 149)
A triangular number, such as $1,3,6$, or 10 , can be represented as a triangular array.

$$
i \quad{ }_{3} \bullet \quad \bullet \quad . \quad \bullet
$$

- - -
- ••
a) Determine a pattern you can use to determine any triangular number.
b) Determine how many natural numbers from 1 to 100 are
i) even and triangular,
ii) odd and triangular, and
odd and triang
c) How many numbers are triangular?

Example 3: Describing the relationships between sets (p. 151)
Alden and Connie rescue homeless animals and advertise in the local newspaper to find home for the animals. They are setting up a web page to help them advertise the animals that are available. They currently have dogs, cats, rabbits, ferrets, parrots, lovebirds, macaws, iguanas, and snakes.
a) Design a way to organize the animals on the web page. Represent your organization using a Venn diagram.
b) Name any disjoint sets.
c) Show which sets are subsets of one another using set notation.
d) Alden said that the set of fur-bearing animals could form one subset. Name another set of animals that is equal to this subset.

Example 4: Solving a problem using a Venn diagram (p.152)

Bilyana recorded the possible sums that can occur when you roll two four-sided dice in an outcome table:

- Display the following sets in one Venn diagram:
- rolls that produce a sum less than 5
- rolls that produce a sum greater than 5

	1	2	3	4
1	2	3	4	5
2	3	4	5	6
3	4	5	6	7
4	5	6	7	8

- Record the number of elements in each set.
- Determine a formula for the number of ways that a sum less than or greater than 5 can occur. Verify your formula.

HW: 3.1 p. 154-158 \#4, 6, 8, 9, 11, 12, 14, 15, 16 \& 19

F Math 12

3.2 Exploring Relationships between Sets p. 159

Name
Date
Goal: Explore what the different regions of a Venn diagram represent

EXPLORE the Math

In an Alberta school, there are 65 Grade 12 students. Of these students, 23 play volleyball and 26 play basketball. There are 31 students who do not play either sport. The following Venn diagram represents the sets of students.

How many students play: Volleyball only? \qquad Both Volleyball and Basketball? \qquad -

Basketball only? \qquad Neither sport? \qquad

Reflect: Consider the set of students who play volleyball and the set of students who play basketball. Are these two sets disjoint? Explain how you know.

Example 2: Each member of a sports club plays at least one of soccer, rugby, or tennis. The following information is known. 43 members play tennis, 11 play tennis and rugby, 7 play tennis and soccer, 6 play soccer and rugby, 84 play rugby or tennis, 68 play soccer or rugby, and 4 play all three sports.
a) Display the information in a Venn diagram.

b) How many members does the club have?

Example 3: In a high school, there are 130 grade 11 students. Currently, 82 students are taking math, 27 are taking math and physics, 25 are taking math and chemistry, 20 are math, 27 are taking math and physics, 25 are taking math and chemistry, 20 are
taking chemistry and physics, 110 are taking math or chemistry, and 87 are taking taking chemistry and physics, 110 are taking math or chemistry, and
a) Draw a Venn diagram to display the information.

b) How many students are taking math or physics?
c) How many students are taking none of these three courses?

Example 4: Each student at a music camp plays at least one of the following instruments: violin, piano, or saxophone. It is known that 6 students play all three instruments, 163 play piano, 36 play piano and violin, 13 play piano and saxophone, 11 play saxophone and violin, 208 play violin or piano, and 98 play saxophone or violin.
a) Draw a Venn diagram to display the information.

b) How many students are there at the camp?

In Summary

- Sets that are not disjoint share common elements.
- Each area of a Venn diagram represents something different.

When two non-disoint sets are represented in a Venn diagram, you region of the diagram just once.

Need to Know

- Each element in a universal set appears only once in a Venn diagram. - If an element occurs in more than one set, it is placed in the area of the Venn diagram where the sets overlap.

F Math 12

3.3 Intersection and Union of Two Sets p. 162

Goal: Understand and represent the intersection and union of two sets.

1. intersection: The set of elements that are common to two or more sets. In set notation, $A \cap B$ denotes the intersection of sets A and B; for example, if $A=\{1,2,3\}$ and $B=\{3,4,5\}$, then $A \cap B=\{3\}$.
2. union: The set of all the elements in two or more sets; in set notation,
$A \cup B$ denotes the union of sets A and B; for example, if $A=\{1,2,3\}$ and $B=\{3,4,5\}$, then $A \cup B=\{1,2$, $3,4,5\}$.
3. Principle of Inclusion and Exclusion: The number of elements in the union of two sets is equal to the sum of the number of elements in each set, less the number of elements in both sets; using set notation, this is written as $n(A \cup B)=n(A)+n(B)-n(A \cap B)$.

Venn Diagrams \& Notation

Shade the region that contains the elements that belong.

A

B

A^{\prime}

B^{\prime}

$A \cup B$

$(A \cup B)^{\prime}$

$A \cap B$

$(A \cap B)^{\prime}$

$A \backslash B$

$B \backslash A$

Example 1: Determining the union and intersection of disjoint sets (p.164)
If you draw a card at random from a standard deck of cards, you will draw a card from one of four suits: clubs (C), spades (S), hearts (H), ordiamonds (D).
a) Describe sets C, S, H, and D, and the universal set U for this situation.
b) Determine $n(C), n(S), n(H), n(D)$, and $n(U)$.
$U=$
$S=$ \qquad
$H=$
\qquad
$D=$ \qquad
$n(U)=$
\qquad
$n(S)=$ \qquad
$n(H)=$
\qquad
$n(C)=$ \qquad
$n(D)=$ \qquad
c) Describe the union of S and H. Determine $n(S \cup H)$.
d) Describe the intersection of S and H. Determine $n(S \cap H)$.
e) Determine whether the events that are described by sets S and H are mutually exclusive, and whether sets S and H are disjoint.
f) Describe the complement of $S \cup H$.

Example 2: Determining the number of elements in a set using a formula (p. 166)
The athletics department at a large high school offers 16 different sports:

badminton	hockey	tennis
basketball	lacrosse	ultimate
cross-country running	rugby	volleyball
curling	cross-country skiing	wrestling
football	soccer	
golf	softball	

Determine the number of sports that require the following types of equipment:
a) a ball and an implement, such as a stick, a club, or a racque
b) only a ball
d) either a ball or an implement
e) neither a ball nor an implement

Principle of Inclusion and Exclusion

The number of elements in the union of two sets is equal to the sum of the number of elements in each set, less the number of element in

Subtract the elements in the intersection, so they are not counted twice, once in $n(A)$ and once in $n(B)$
If two sets, A and B are disjoint, they contain no common elements.

Example 3: Determining the number of elements in a set by reasoning (p. 168)
Jamaal surveyed 34 people at his gym. He learned that 16 people do weight training three times a week, 21 people do cardio training three times a week, and 6 people train fewer than three times a week. How can Jamaal interpret his results?

F Math 12
Name \qquad
Date
Goal: Use sets to model and solve problems.
Example 1: Solving a puzzle using the Principle of Exclusion and Inclusion (p.180) Use the following clues to answer the questions below:

- 28 children have a dog, a cat, or a bird.
- 13 children have a dog
- 13 children have a cat
- 13 children have a bird
- 4 children have only a dog and a ca 3 children have only a dog and a bird.
- 2 children have only a cat and a bird
- No child has two of each type of pet
a) How many children have a cat, a dog, and a bird?

Define the sets and draw a Venn diagram
Let x represent the number of children
with a bird, a cat, and a dog.
$P=\{$ children with \qquad
$C=\{$ children with a \qquad - $\}$
$B=\{$ children with a \qquad -\}
$D=\{$ children with a \qquad

Example 3: Shannon's high school starts a campaign to encourage students to use "green" transportation for travelling to and from school. At the end of the first semester, Shannon's class surveys the 750 students in the school to see if the campaign is working. They obtain these results:

- 370 students use public transit.
- 100 students cycle and use public transit.
- 80 students walk and use public transit.
- 35 students walk and cycle.

Complete the Venn Diagram to show how many students are using green transportation for travelling to and from school.
$U=\{$ students who attend Shannon's school $T=$ \{students who use public transit\}
$W=\{$ students who walk $\}$
$C=\{$ students who cycle $\}$

- 20 students walk, cycle, and use public transit.
- 445 students cycle or use public transit.
- 265 students walk or cycle.

	Name
	Date

Goal: Understand and interpret conditional statements.

1. conditional statement: An "if-then" statement; for example, "If it is Monday, then it is a school day."
2. hypothesis: An assumption; for example, in the statement "If it is Monday, then it is a school day," the hypothesis is "It is Monday."
3. conclusion: The result of a hypothesis; for example, in the statement "If it is Monday, then it is a school day," the conclusion is "it is a school day."
4. counterexample: An example that disproves a statement; for example, "If it is Monday, then it is a school day" is disproved by the counterexample that there is no school on Thanksgiving Monday. Only one counterexample is needed to disprove a statement.
5. converse: A conditional statement in which the hypothesis and the conclusion are switched; for example, the converse of "If it is Monday, then it is a school day" is "If it is a school day, then it is Monday."
6. biconditional: A conditional statement whose converse is also true; in logic notation, a biconditional statement is written as " p if and only if q." For example, the statement "If a number is even, then it is divisible by 2 " is true. The converse, "If a number is divisible by 2 , then it is even," is also true. The biconditional statement is "A number is even if and only if it is divisible by 2. ."
```
Communication Notation
p=>q is notation for "If p, then q."
p=>q\mathrm{ is read as " p implies q."}
```


LEARN ABOUT the Math

James and Gregory like to play soccer, regardless of the weather. Their coach made this conditional statement about today's practice: "If it is raining outside, then we practise indoors."

When will the coach's conditional statement be true, and when will it be false?
Example 1: Verifying a conditional statement (p.195)
Verify when the coach's conditional statement is true or false.
Hypothesis: \qquad
Conclusion: \qquad
Each of these statements is either true or false, so to verify this conditional statement, consider four cases.

Case 1: The hypothesis is true and the conclusion is true.

When the hypothesis and conclusion are both true, a conditional statement is \qquad

Case 2: The hypothesis is false, and the conclusion is false.

When the hypothesis and conclusion are both false, a conditional statement is \qquad -

Case 3: The hypothesis is false, and the conclusion is true.

When the hypothesis is false and conclusion is true, a conditional statement is \qquad

Case 4: The hypothesis is true, and the conclusion is false.

When the hypothesis is true and conclusion is false, a conditional statement is \qquad This \qquad shows that the conditional statement is \qquad -

Use a Truth Table to Summarize the Observations

Let p represent the hypothesis: It is raining outside.
Let q represent the conclusion: We practise indoors.

p	q	$p \Rightarrow q$

When the hypothesis is false, regardless of whether the conclusion is true or false, the conditional statement is true

From the truth table, I can see that the only time a conditional statement will be false is when the hypothesis is \qquad and the conclusion is \qquad .

Example 2: Writing conditional statements (p. 200)

"A person who cannot distinguish between certain colours is colour blind."
a) Write this sentence as a conditional statement in "if p, then q " form.
b) Write the converse of your statement.
c) Is your statement biconditional? Explain.

The first statement is \qquad
The converse is \qquad

The statement can be written:
"A person is colour blind \qquad that person cannot distinguish between certain colours."

Example 5: Verifying a biconditional statement (p. 200)

Reid stated the following biconditional statement: "A quadrilateral is a square if and only if all of its sides are equal." Is Reid's biconditional statement true? Explain.

Conditional Statement:

Converse:

In Summary
Key Ideas

- A conditional statement consists of a hypothesis, p, and a conclusion, q

Different ways to write a conditional statement include the following:

- p implies q
$p \Rightarrow q$
- To write the converse of a conditional statement, switch the hypothesis and the conclusion.

Need to Know

A conditional statement is either true or false. A truth table for Conditional statement, $p \Rightarrow q$, can be set up as follows:

A conditional statement is false only when the hypothesis is true and the conclusion is false. Otherwise, the conditional statement is true, even if the hypothesis is false.

- You can represent a conditional statement using a Venn diagram, with the inner oval representing the hypothesis and the outer oval representing the conclusion. The statement " p implies q " means that p is a subset of q.
- Only one counterexample is needed to show that a conditional statemen
is false.
- If a conditional statement and its converse are both true, you can combine them to create a biconditional statement using the phrase "if and only if."

F Math 12

3.6 The Inverse and the Contrapositive of Conditional Statements p. 208

Name \qquad
Date \qquad
Goal: Understand and interpret the contrapositive and inverse of a conditional statement.

1. inverse: A statement that is formed by negating both the hypothesis and the conclusion of a conditional statement; for example, for the statement "If a number is even, then it is divisible by 2," the inverse is "If a number is not even, then it is not divisible by 2 ."
2. contrapositive: A statement that is formed by negating both the hypothesis and the conclusion of the converse of a conditional statement; for example, for the statement "If a number is even, then it is divisible by 2," the contrapositive is "If a number is not divisible by 2 , then it is not even."

\mathbf{p}	\mathbf{q}	$\boldsymbol{p} \Rightarrow \boldsymbol{q}$
T	T	T
F	F	T
F	T	T
T	F	F

Communication Notation
In logic notation, the inverse of "if p, then q " is written as "If $\neg p$, then $\neg q$.

Example 1: Verifying the inverse and contrapositive of a conditional Statement (p. 209) Consider the following conditional statement: "If today is February 29, then this year is a leap year."
a) Verify the statement, or disprove it with a counterexample.

Hypothesis (p): \qquad Conditional statement: if p, then q
Conclusion (q): \qquad
b) Verify the converse, or disprove it with a counterexample.
converse:
Hypothesis (p): \qquad
Conclusion (q): \qquad

c) Verify the inverse, or disprove it with a counterexample. Inverse:

Hypothesis $(\neg p)$: \qquad Inverse: if \qquad then \qquad -.

Conclusion $(\neg q)$: \qquad
d) Verify the contrapositive, or disprove it with a counterexample.

Contrapositive: \qquad
Hypothesis ($\neg q)$: \qquad Contrapositive: if , then \qquad -

Conclusion $(\neg p)$: \qquad

Converse: if q, then p.

Communication Notation

In logic notation, the contrapositive of "if p, then
q " is written as "if $\neg q$, then $\neg p$."

Example 2: Examining the relationship between a conditional statement and its contrapositive (p. 210)

Consider the following conditional statement: "If a number is a multiple of 10 , then it is a multiple of 5 ."
a) Write the contrapositive of this statement.
b) Verify that the conditional and contrapositive statements are both true.

In Summary:

- You form the inverse of a conditional statement by \qquad the hypothesis and the conclusion.
- You form the converse of a conditional statement by \qquad
\qquad the hypothesis and the conclusion
- You form the contrapositive of a conditional statement by \qquad the hypothesis and the conclusion of it's \qquad -.
- If a conditional statement is true, then it's \qquad is true, and vice versa
- If the inverse of a conditional statement is true, then the \qquad of
the statement is also true, and vice versa

