## Practice Test

## Chapter 4 -Counting Methods

Name: $\qquad$
Block: $\qquad$

## Multiple Choice

Identify the choice that best completes the statement or answers the question.

## B

1. Eve can choose from the following notebooks:

- lined pages come in red, green, blue, and purple
- graph paper comes in orange and black

How many different colour variations can Eve choose if she needs one lined notebook and one with graph paper?

Fundamental Counting Principle: If there are " $a$ " ways to perform one
A. 6
B. 8
C. 12 task and "b" ways to perform another, then there are $a \cdot b$ ways of performing both.
D. 16

$$
\begin{aligned}
\# \text { variations } & =(\# \text { lined })(\# \text { graph }) \\
& =(4)(2) \\
& =8
\end{aligned}
$$

2. A combination lock opens with the correct four-letter code. Each wheel rotates through the letters A to L. How many different four-letter codes are possible?
A. 20736
B. 48

It doesn't say that you cant use the same
C. 1728
D. 456976

$$
\begin{gathered}
\text { \#different codes }=(\# \text { Letters) }(\# \text { Letters) }(\# \text { Letters) }(\# \text { Letters) } \\
\text { AB CDEFGHIJKL }=12 \text { possible letters. } \\
\text { \# different codes }=12 \times 12 \times 12 \times 12=20736
\end{gathered}
$$

3. A restaurant offers 60 flavours of wings. How many ways can two people order two servings of wings, either the same flavour or different flavours?
A. 3481

Repetition is OK .
B. 3540
C. 3600
D. 3660

$$
\begin{gathered}
\text { \# possibilities }=60 \times 60=3600 \\
\text { choices for } g \quad \begin{array}{c}
\text { choices for } \\
\text { Person 1 }
\end{array} \\
\text { person 2 }
\end{gathered}
$$

4. How many possible ways can you draw a single card from a standard deck and get an even number?
A. 13
B. 20
C. 21
D. 26

Hearts: 2,4,6,8,10
Diamonds: $2,4,6,8,10$
Clubs: $2,4,6,8,10$
Spades: $2,4,6,8,10$

5. Evaluate.

$$
\frac{10!}{9!}+3!=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}+3 \cdot 2 \cdot 1
$$

A. 13
B. 16

$$
=10+3 \cdot 2 \cdot 1
$$

C. 20
D. 23

$$
\begin{aligned}
& =10+6 \\
& =16
\end{aligned}
$$

6. Identify the expression that is equivalent to the following:

$$
n(n+1)(n-1)
$$

A. $\frac{(n+1)!}{(n-2)!}$
B. $\frac{(n+2)!}{(n-1)!}(n-2)!$

$$
\frac{B}{\frac{(n+2)!}{(n-1)!}}
$$

$$
\begin{array}{rlrl}
\frac{19)!}{2)!} & \frac{(n+1)!}{(n-2)!} & \frac{(n+2)!}{(n-1)!} \\
= & \frac{(n+1)(n)(n-1)(n-2)(n-3) \cdots(2)(1)}{(n-2)(n-3) \cdots(2)(1)} & =\frac{(n+2)(n+1)(n)(n-1) \cdots(2)(1)}{(n-1)(n-2) \cdots(2)(1)} \\
= & & =(n+1)(n)(n-1) & n+2)(n+1) \\
= & n(n+1)(n-1) & & (n+1)! \\
C & n^{3}=n \times n \times n & & (n+1)(n)(n-1)(n-2) \cdots(2)(1)
\end{array}
$$

C. $n^{3}$
D. $(n+1)$ !
7. How many different permutations can be created when 7 people line up to buy movie tickets?
A. 49
B. 128
C. 720
D. 5040

7 People in a line:

7 choices for first position

$$
\frac{6}{1}-5-32 \frac{1}{\uparrow}
$$

Now only one choice for last position. is already placed. 6
\# Permutations $=\left(\#\right.$ for $1^{\text {st }}$ position $)(\# 2 n d)\left(\# 3^{\text {rd }}\right) \ldots=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
8. Evaluate.

$$
=7!=5040
$$

$$
{ }_{14} P_{7}
$$

$$
n P_{r}=\frac{n!}{(n-r)!}
$$

A. 17297280

$$
\begin{aligned}
14 P_{7} & =\frac{14!}{(14-7)!}=\frac{14!}{7!} \\
& =\frac{14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 76-3 \cdot 4}{7 \cdot 6 \cdot 5 \cdot 3 \cdot 1} \\
& =14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \\
& =17297280
\end{aligned}
$$

B. 2162160
C. 121080960
D. 105413504 choices left
${ }_{14} P_{7}$
A. 2162160
9. Suppose a word is any string of letters. How many two-letter words can you make from the letters in LETHBRIDGE if you do not repeat any letters in the word?
A. 72
B. 100
C. 81
D. 90

If you take out the repeated letters you are left with:

LETHBRIDG (9 different letters)


1. .s. 1 Ind



$$
\frac{1}{\text { the first light }} \frac{9}{\substack{q \\ \text { must be al } \\ \text { so only option to chose } \\ \text { for now } \\ \text { lo is gone }}} \frac{8}{\uparrow} \cdot \frac{7}{\uparrow}=504
$$

A
11. Solve for $r$.

$$
{ }_{r=5}^{{ }_{15} P_{r-2}=} \underbrace{2730}{ }_{n} P_{r}=\frac{n!}{(n-r)!}{ }_{15} P_{(r-2)}=\frac{15!}{(15-(r-2))!}=\frac{15!}{(15-r+2)!}=\frac{15!}{(17-r)!}
$$

* You can
also just
A. $r=5$
B. $r=6$
substitute in
these values.
and see which one works.

$$
12!=(17-r)!\Rightarrow 12=17-r \Rightarrow-5=-r \Rightarrow r=5
$$

since there is only one
A
12. Evaluate. term in each factorial $\Rightarrow$ they must be equal!

$$
\begin{aligned}
& \frac{15!}{10!\cdot 3!\cdot 2!}= \frac{15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10!}{10!\cdot 3!\cdot 2!} \\
& \frac{\text { A. } 30030 \mid}{\text { A. } 30300} \\
& \begin{array}{l}
\text { (. } 600000 \\
\text { D. } 60600
\end{array}=\frac{15 \cdot 14 \cdot 13 \cdot 12 \cdot 11}{3 \cdot 2 \cdot 1 \cdot 2 \cdot 1} \\
&=\frac{360360}{12} \\
&=30030
\end{aligned}
$$

13. How many different routes are there from $A$ to $B$, if you only travel south or east?

A. 128
B. 256
C. 156
D. 104


Numbers along top and far left stay the same.
14. Eight quarters are flipped simultaneously. How many ways can at least six coins land heads?
A. 36

* Order
B. 37 doesn't matter C. 44 so it is a Combination.
$8 \mathrm{C}_{6}+8 \mathrm{C}_{7}+{ }_{8}{ }_{8}{ }_{8}{ }_{8}$ (out of 8 coins 8 $\quad$ Gout of 8 choose 6 to be heads) choose all choose all
8 to be heads)

$$
=28+8+1=37 \text { ways }
$$

15. The numbers 10 to 16 are written on identical slips of paper and put in a hat. How many ways can 2 numbers be drawn simultaneously?
A. 21
B. 15 4 No Replacement.
C. 30
D. 42

Possible Numbers: $\underbrace{10}$
So it is a combination.
7 to choose from

$$
\begin{aligned}
\neg_{2} & =\frac{7!}{2!(7-2)!} \\
& =\frac{7 \cdot 6 \cdot 5!}{2!\cdot 5!}=\frac{7 \times 6}{2} \\
& =21
\end{aligned}
$$

16. Identify the term that best describes the following situation: Determine the number of pizzas with 4 different toppings from a list of 40 toppings.
A. permutations
B. combinations
C. factorial
D. none of the above
order does $t$ matter, so out of 40 toppings choose 4 .


Short Answer
17. The "Pita Patrol" offers these choices for each sandwich:

- white or whole wheat pitas
- 3 types of cheese
- 5 types of filling
- 12 different toppings
- 4 types of sauce

How many different pitas can be made with 1 cheese, 1 filling, 1 topping, and no sauce?

18. Solve for $n$, where $n \in I$.
(the only option is "No Sauce")
$n \in I$
means that
$n$ is an
Integer.

$-12$

$\frac{4}{4} \times \frac{-3}{-3}=-12$
$\underline{-3}=+1$


$$
\frac{(n+1)(n)(n-1)(n-2) \cdots(3)(2)(1)}{2(n-1)(n-2) \cdots(3)(2)(1)}=6
$$

$$
2 x \times \frac{(n+1)(n)}{2}=6 \times 2
$$


$n^{2}+n=12$

$$
n^{2}+n-12=0
$$

$$
\begin{gathered}
(n-3)(n+4)(n+4)=0 \\
1 \\
n=3 \quad \begin{array}{c}
\text { on }
\end{array} n=-4
\end{gathered}
$$

The only way to get zero when multiplying is if either $(n-3)=0$ $O R \quad(n+4)=0$

Check your answers:

$$
\begin{aligned}
& \frac{(3+1)!}{2(3-1)!} \\
= & \frac{4!}{2(2!)}=6
\end{aligned}
$$

$$
\begin{array}{ll} 
& \frac{(-4+1)!}{2(-4-1)!} \\
= & \frac{(-3)!}{2(-5)!}
\end{array} \quad \times \begin{aligned}
& \text { Negative } \\
& \text { Factorials } \\
& \text { are undefined }
\end{aligned}
$$

19. How many different arrangements can be made using all the letters in YELLOWKNIFE, SO $\cap \neq-4$ if the first letter must be L and the last letter must be Y ?
If you take out the $L \pm Y$ (they MUST be first and last) we are left with the letters: ELOWKNIFE

To get each
number add the
numbers from top and left.

*Order doesn't matter
$\Rightarrow$ Combinations

two teachers:


* Order doesn't matter $\Rightarrow$ Combinations

22. From a standard deck of 52 cards, how many different four-card hands are there with at most two diamonds?

No Diamonds + One Diamond + Two Diamonds


$$
\begin{aligned}
& =1.82251+13.9139+78.741 \\
& =82251+118807+57798 \\
& =258856 \text { possible } \\
& 4-\text { card hands }
\end{aligned}
$$

Problem
23. Hannah plays on a local hockey team. The hockey uniform has:

- four different sweaters: white, blue, grey, and black, and
- two different pants: blue and grey.
a) Draw a tree diagram to determine how many different variations of the uniform the coach can choose from for each game are possible.

b) Confirm your answer to part a) using the Fundamental Counting Principle.

$$
\begin{aligned}
\text { Variations } & =(\# \text { possible sweaters) }(\# \text { different pants) } \\
& =4.2 \\
& =8 \\
& \begin{array}{c}
\text { There are } 8 \text { different } \\
\text { variations }
\end{array}
\end{aligned}
$$

No car is the
C exact same
24. At a used car lot, 8 different car models are to be parked close to the street for easy viewing, but there is only space for 6 cars. How many ways can 6 of the 8 cars be parked in a row?
Show your work.
Order does matter $\Rightarrow$ Permutations
Out of 8 cars Permute 6.

$$
{ }_{8} P_{6}=\frac{8!}{(8-6)!}=\frac{8!}{2!}
$$

about how many cars you have to choose from to place in each position

$$
\underbrace{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3}_{6 \text { positions }}
$$

$$
\begin{aligned}
& =8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \\
& =20160 \\
& \text { Ways }
\end{aligned}
$$

* Or you can think

26. There are 18 boys and 13 girls in an English classroom. A group of 6 students is needed to read from a play. If there are 2 roles for boys, 3 roles for girls, and a narrator who could be a boy or a girl, how many different groups of 6 students are possible? Show your work.

You must be very careful when reading these types of questions. The question asks for the number of different groups. So how the parts are divided within the groups doesn't matter $\Rightarrow$ Combinations.

Narrator is a boy Narrator is a Girl

27. Fifteen camp counselors are signing up for training courses that have only a limited number of spaces. Only 5 people can take the water safety course, 4 people can take the first aid course, 3 people can take the conflict management course, and 3 people can take the astronomy course. How many ways can the 15 counselors be placed in the four courses? Show your work.
Within each course order doesn't matter $\Rightarrow$ Combination


