Electric Circuits Notes
 1 - Introduction to Circuits Electricity

A) CHARGE [Mr.Cheung can I charge my phone?]

Fundamental particles like \qquad , \qquad and
\qquad make up in our universe. These particles have different properties like size, mass and charge.

Figure 1: Charge!!!!
Charge is a fundamental property of matter and it is measured in \qquad . Name after French Physicists Charles-Augustin de Coulomb [1736-1806 Figure 2]

Atlas: But... but.... daddy what is a charge?
Mr. Cheung: No one can tell you what charge really is, the only rules scientists have discovered so far.....

1. There are two types of charges (\qquad and \qquad) and...
2. Charges can interact with each other (via Electric Force)
a. Opposite charges \qquad each other
b. Like charges \qquad

Particle	Proton	Neutron	Electron
Symbol			\bullet
Mass			
Charge			

Figure 2: Charles de Coulomb - Your old friend $F_{f}=\mu F_{N}$ was my work too. You are welcome ^_^^

Did you my name is craved into the Eiffel Tower? Ask Mr. Cheung to show you a picture~

B) ELECTRONS AND ELECTRIC CIRCUIT

Have you ever wonder how energy is delivered to your electronic devices (ie. your TV set and cellphones etc.)? Energy can come from the AC outlet or it be stored in portable storage device like a battery, but nothing is going to happen if you hold up a battery in the air. For energy to flow into your devices, you must provide a
\qquad /connection between the \qquad (the AC outlet) and the \qquad (ie, your PS4); on top of that you will also need \qquad (uber eats? \rightarrow electrons)

C) Voltage, Current, resistance and Ohm's Law [let the great pizza analogy begin! Brought to you by Mr. Cheung]

Voltage (Potential Difference) is the change in potential energy per unit charge. It is the amount of energy carried by 1 Coulomb of electrons

	$\mathrm{V}:$
	$\mathrm{E}:$
$\mathrm{Q}:$	

Current is the rate of flow of charge (electron) through the cross-sectional area of a conductor (\qquad _).
\square
I:
Q:

Resistance is a property of material and it is measured in \qquad . Some materials have \qquad resistance and they are good \qquad (ex, metals); they allow electrons to flow \qquad . Other materials (ex, wood/plastic/air) have \qquad resistance value and they are bad \qquad ; electrons have a harder time (\qquad) traveling through them.

Ohm's Law: The ratio between the voltage and the current through a conductor (load, resistor) is a constant and represents the resistance of the material.

V: Voltage (___)
I: Current (\qquad
R: Resistance (___)

Mr.Cheung's Pizza model of Circuity

Recall that power is........

Electric Power is the rate at which energy is transferred

From the definition of power and Ohm's Law we can derive some formulae to describe electric power

Example: An electric fan has a resistance of 12Ω and requires 0.75 A of current to function properly. What voltage is required to operate the fan?

Example: An electric heater emits 100 W when connected to a 120 V power line. What is the resistance in the heater?

Example: When a 12 V car battery powers a single 30 W headlight, how many electrons pass through it in one minute?
E) DIRECTION OF CURRENT [what do you call a misunderstanding that is never fixed? A convention...]

The direction of current can be considered in two ways:

1) Electron Flow: The direction that the electrons actually move. The electrons go from the \qquad to the \qquad terminal.
2) Conventional Current: Flow of positive charge. Positive charges flow from the \qquad to the \qquad terminal.

Figure 3: I am on the US $\$ 100$ Bill~~

In 1752, prior to electricity being identified with the electron, Ben Franklin chose a convention regarding the direction of current flow. Franklin assumed that \qquad charge carriers flowed from positive to negative terminals. We now know this is incorrect. In metals, the charge carrier is the \qquad whose charge is \qquad by definition. As a result, most people still prefer using the direction of the conventional current.

In this class, unless otherwise stated, we will always use

F) CIRCUIT SYMBOLS (SCHEMATIC)

CELL	BATTERY	WIRE	JUNCTION	RESISTOR

BULB	SWITCH (OPEN)	SWITCH (CLOSED)	VOLTMETER	AMMETER

We can measure the voltage in a circuit using a \qquad and the current in a circuit using a
\qquad . But we need to connect these two devices in different ways.

Voltmeter:

- must be connected in \qquad . This is because a voltmeter measures the voltage
drop \qquad a device and it has very high \qquad _.
- Most of the current passes through the \qquad with only a small percentage passing through the \qquad so we won't waste energy.
- "we are trying to measure the \qquad carried by the electrons \qquad and \qquad they go through a power source or a load."

Ammeter:

- An ammeter must be connected in \qquad . This is because an ammeter measures the current \qquad a circuit and it has very low resistance.
- Ammeter is trying to count the \qquad of electrons (in Coulombs) going through the conductor wire per second. You have to stand in the \qquad in order to count the people ^_ ${ }^{\wedge}$

1) A current of 3.60 A flows for 15.3 s through a conductor. Calculate the number of electrons that pass through a point in the conductor in this time.
2) How long would it take 2.0×10^{20} electrons to pass through a point in a conductor if the current was 10.0 A ?
3) Calculate the current if a charge of 5.60 C passes through a point in a conductor in 15.4 s .
4) What is the potential difference across a conductor to produce a current of 8.00 A if there is a resistance in the conductor of 12.0Ω ?
5) What is the heat produced in a conductor in 25.0 s if there is a current of 11.0 A and a resistance of 7.20Ω ?
6) 150 J of heat are produced in a conductor in 5.50 s . If the current through the conductor is 10.0 A , what is the resistance of the conductor?
7) What is the current through a 400 W electric appliance when it is connected to a 120 V power line?
8) a. When an electric appliance is connected to a 120 V power line, there is a current through the appliance of 18.3 A . What is its resistance?
b. What is the average amount of energy given to each electron by the power line?
$\left(1.92 \times 10^{-17} \mathrm{~J}\right)$
9) a. What potential difference is required across an electrical appliance to produce a current of 20.0 A when there is a resistance of 6.00Ω ?
b. How many electrons pass through the appliance every minute?
10) A student designed an experiment in order to measure the current through a resistor at different voltages. Given the following data:

Voltage (V)	Current (I)
3.0	0.15
6.0	0.30
9.0	0.45
12.0	0.50
15.0	0.75

a) Draw a graph showing the relationship between current and voltage (V vs. I)
b) Using the graph, what is the resistance of the resistor?

$(20.0+/-0.5 \Omega)$

Electric Circuits Notes

2 - Basic Circuit

A) SERIES AND PARALLEL CIRCUIT

Series: \qquad path for the electrons

Parallel: more than one path for the electrons

"Adding more paths always \qquad total resistance and \qquad current!!"

B) SOLVING BASIC CIRCUIT PROBLEMS

1. Draw a circuit diagram if not provided
2. Next to each resistor, indicate \qquad
\qquad and \qquad Next to the battery, indicate V_{T}, I_{T} and R_{T}
3. Apply Series and Parallel Rules appropriately. For each resistor/battery, when two of V, I and R are known, use
\qquad to determine the third
4. For circuit with resistors connected in both series and parallel. You may need to transform the combination circuit into a series circuit by determining the \qquad of the parallel branches

Example 1: What is the equivalent resistance (Total
Resistance R_{T}) of this circuit?

Example 2: What is the equivalent resistance (Total Resistance R_{T}) of this circuit?

Example 3: Determine the current through the 5Ω Resistor

Example 4: Determine the resistance of R_{3}

Example 5: Determine the current through each resistor.

Example 1 for Note Day 3: Kirchhoff's Law: Determine the current through each resistor 20 V

Circuit Worksheet 5.2-Series and Parallel Circuits
For each circuit, determine the voltage, current and resistance through each resistor and the total voltage, current and resistance of the circuit.
1.

2.

3.

4.

5.

6.

7.

8.

Electric Circuits Notes

3 - Kirchhoff's Laws
A) Kirchhoff's Current Law: AKA \qquad
"The sum of current going into a junction is \qquad -
\qquad $"$

For any junctions:

gUSTAV ROBERT KIRCHHOFF.

Cheung's Current Law: Enjoy your meal but don't eat the person who delivers the food!!
B) Kirchhoff's Voltage Law: AKA \qquad
"For any closed loop, the sum of voltage gain is \qquad
\qquad

For any loops in the circuit:

C) Solving Circuits with Kirchhoff's Laws - an alternate method, useful for more complicated circuits

1. Draw a circuit diagram if not provided
2. Next to each resistor, indicate V, I and R
3. Next to the battery, indicate V_{T}, I_{T} and R_{T}
4. Indicate the direction of current of each part of the circuit
5. Apply the Current Law to each \qquad Try to find a junction with only one unknown \qquad .
6. Apply the Voltage Law to each \qquad . Try to find a loop with only one unknown \qquad _.
7. You might need to calculate \qquad of the parallel branches to simplify the question.
8. Use Ohm's Law $V=I R$ or Power formula $P=I V=I^{2} R=\frac{V^{2}}{R}$ to help you at any time ^ \qquad ${ }^{\wedge}$

Example 2: What is the value of $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and R_{2} in the circuit

Example 3: a) What is the voltage across the 8.0Ω resistor
b) How much power is dissipated in the 5.0Ω resistor

For each circuit, determine unknown quantity indicated on the diagram.

2.

5.

8.

Electric Circuits Notes

4 - Electromotive Force
We know that a battery is a source of potential difference (\qquad) or electric energy. When not connected to a circuit there is a potential difference between the terminals.

This voltage is also known as...
Despite the name, this is a \qquad not a \qquad .
This dates back to a time when we thought that the two were equivalent.
For example a car battery has an EMF of \qquad and lithium battery has an EMF of \qquad .

However, as soon as a battery is connected to a circuit and current flows through it the potential difference across the terminals is always...

This is due to the fact that every battery has...
Because of this \qquad the terminal voltage is always \qquad than the EMF of the battery.

| Where: | |
| :--- | :--- | :--- |
| Note: | $\mathrm{Ir}=$ |
| Note: | If the battery is not connected to a circuit... |

Consider the following diagram showing a circuit with an external resistance, \qquad , internal resistance and EMF \qquad .

When a battery goes dead it is because...

When a rechargeable battery is being charged an external voltage is applied to the battery. In order to force electrons backwards into the battery the external voltage must be...

In fact the external voltage must be:

Example:

If a 12.0 V battery has an internal resistance of 0.220 ohms, what is the terminal voltage of the battery when a current of 3.00 A flows through the battery?

Example:

A 12.0 V car battery is being charged by an alternator that can supply 15 V . If the internal resistance of the battery is 1.3 ohms , what is the current through the battery?

1. Determine the terminal voltage of the battery.

2. Determine the emf of the cell.

3. A battery with an internal resistance is connected to three resistors as shown.

a) Determine internal resistance.
b) What power is dissipated in the battery's internal resistance?
4. Determine the internal resistance of the battery.

5. An ideal battery is connected to four resisters as shown.

a) How much charge flows through R_{4} in 1 hour?
b) What power is dissipated by R_{4} ?
c) How much energy is dissipated by R_{4} in 1 hour?
6. When a power supply whose emf is 12.0 V is connect to a resistor, it delivers 9.0 A of current. When the same supply is connected to two identical resistors in series, the current from the supply is 5.0 A . Determine the internal resistance of the supply.

