Short Answers: Show all work,

1) Two equal charges of magnitude $1.1 \times 10^{-7} \mathrm{C}$ experience an electrostatic force of $4.2 \times 10^{-4} \mathrm{~N}$. How far apart are the centres of the two charges?
\qquad
2) What are the magnitude and direction of the electric force on the $-6.0 \times 10^{-6} \mathrm{C}$. [3 marks]

$$
Q_{1}=-6.0 \times 10^{-6} \mathrm{C} \quad \mathrm{q}=+2.0 \times 10^{-6} \mathrm{C} \quad Q_{2}=-7.0 \times 10^{-6} \mathrm{C}
$$

3) Consider the diagram to the right.
a) Determine the electric field (magnitude and direction) at point P. [4 marks]

Magnitude) \qquad
Direction) \qquad
b) Determine the potential (voltage) at point P. [2 marks]
V) \qquad
4) What potential difference (V) is needed to decelerate an alpha particle from $1.4 \times 10^{6} \mathrm{~m} / \mathrm{s}$ to $6.8 \times 10^{5} \mathrm{~m} / \mathrm{s}$.

a) what is the change in potential energy of the proton as it moves to $B, 10 \mathrm{~m}$ from the fixed charge b) if the proton started from rest at A, what would be it speed at B?
a)
b) \qquad
5) An electron with speed of $3.3 \times 10^{7} \mathrm{~m} / \mathrm{s}$ is directed between charged parallel plates as shown.

Determine the magnitude and direction of the acceleration of the electron as it passes between the plates. It would probably be a good idea to determine the electrostatic force first. [5 marks]
6) Consider the setup shown to the right. Note that the hanging charge makes an angle of 18° and has a positive charge of $2.3 \mu \mathrm{C}$. Determine the mass of the hanging sphere. [2 marks]

Ans)

