Short Answers: Show all work,

Two equal charges of magnitude 1.1×10^{-7} C experience an electrostatic force of 4.2×10^{-4} N. How far apart 1) are the centres of the two charges?

	Distance)
What are the magnitude and direction of the electric force on the $-6.0 > Q_1 = -6.0 \times 10^{-6} \text{ C}$ $q = +2.0 \times 10^{-6} \text{ C}$ Q_2 $\bigcirc \bigcirc + \bigcirc + \bigcirc + \bigcirc + \bigcirc +$	$\times 10^{-6}$ C. [3 marks] = -7.0 × 10 ⁻⁶ C
Consider the diagram to the right. a) Determine the electric field (magnitude and direction) at point P. [4 marks]	Force) 7.0 m $2.0 \times 10^{-6} \text{ C}$ $2.0 \times 10^{-6} \text{ C}$ $2.0 \times 10^{-6} \text{ C}$
b) Determine the potential (voltage) at point P. [2 marks]	Magnitude) Direction)
What potential difference (V) is needed to decelerate an alpha particle fr	V) rom $1.4 imes 10^6$ m/s to $6.8 imes 10^5$ m/s.
	What are the magnitude and direction of the electric force on the $-6.0 \pm 0_1 = -6.0 \times 10^{-6} \text{ C} \qquad q = +2.0 \times 10^{-6} \text{ C} \qquad 0_2$

ΔV)_____

a) what is the change in potential energy of the proton as it moves to B, 10 m from the fixed charge b) if the proton started from rest at A, what would be it speed at B?

Determine the **magnitude and direction of the acceleration** of the electron as it passes between the plates. It would probably be a good idea to determine the electrostatic force first. [5 marks]

Acceleration)_____

Direction)_

6) Consider the setup shown to the right. Note that the hanging charge makes an angle of 18° and has a positive charge of 2.3 μ C. Determine the **mass** of the hanging sphere. [2 marks]

Ans)_____