Physics 12 - Electromagnetism Review Worksheet

1. An electron beam strikes the center of a CRT screen. A magnet is then placed near the CRT. Which of the four dots shows the new position of the electron beam? (2)

Front view of screen
3. What are the magnitude and direction of the current induced in the rod? (68 mA, up)

5. A rectangular wire loop is pulled out of a magnetic field with a speed of $7.0 \mathrm{~m} / \mathrm{s}$. What is magnitude and direction of the current in the loop? (0.82 A , clockwise) $1 \leqslant 0.20 \mathrm{~m} \rightarrow 1$

2. Two solenoids are placed together as shown. As the switch is closed, what is the direction of the current through the ammeter, and the direction of the induced magnetic field inside the second solenoid? (I travels from X to $\mathrm{Y} \& \mathrm{~B}$ is directed to right)

4. A single loop of wire encloses an area of $0.035 \mathrm{~m}^{2}$. The magnetic field changes in a time of 0.060 s . What is the induced emf and direction of the current flow in the loop? (0.57 V , counterclockwise)

6. A block of metal moves N perpendicular to a B field. If an e^{-}in the block experiences a $7.2^{*} 10^{-18} \mathrm{~N}$ force vertically upwards out of the page, what are the magnetic field strength and direction, and emf across the block? (0.25 T E, 6.8 V)

7. A proton enters a 0.65 T magnetic field. The velocity of the proton is perpendicular to the field causing the proton to travel in a circular arc of radius 1.1 cm . What is the momentum of the proton? $\left(1.1 * 10^{-21} \mathrm{~kg} * \mathrm{~m} / \mathrm{s}\right)$	8. A 520 turn circular coil of radius 0.26 m is initially outside a 0.56 T magnetic field. The coil is moved into a magnetic field, inducing an emf of 47 V . How much time did it take to move the coil into its new position? $(1.3 \mathrm{~s})$

