Extra Note - Max/Min/x-intercept

December 11, 2023 11:47 AM

$$
y=a x^{3}+b x^{2}+\cdots+c
$$

Polynomial Function Review and Min/Max, x-intercept Part 1

Polynomial functions have positive, integer exponents applied to variables. They do not include absolute values, roots, or negative exponents that are applied to variables, and they do not include variables in the denominator.

Classify the following functions. Decide if the function is a polynomial function. If it is a polynomial function, state its degree, type, leading coefficient and general shape.

Given the graph, describe the end behavior of the function. Also, state the ordered pairs of the real zeros, the y-intercept, the relative maximum(s) and the relative minimum(s).

Given the function, describe the end behavior.

$13 . f(x)=-x^{3}+1$	$14 . f(x)=x^{5}+2 x^{2}$	$15 \cdot f(x)=3 x^{8}-4 x^{3}$	16. $f(x)=-x^{6}+2 x^{3}-x$
As $x \rightarrow+\infty, f(x) \rightarrow+$	As $x \rightarrow+\infty, f(x) \rightarrow-\infty$	As $x \rightarrow+\infty, f(x) \rightarrow-\infty$	As $x \rightarrow+\infty, f(x) \rightarrow-$
As $x \rightarrow-\infty, f(x) \rightarrow$			

Given the graph, what is the lowest degree that the function could have?

Number of turning points: Lowest Degree: \qquad
Real Zeros: \qquad y-intercept:
Relative maximums):
Relative Minimums):
As $x \rightarrow+\infty, f(x) \rightarrow$
\qquad
\qquad

As $x \rightarrow-\infty, f(x) \rightarrow$
As $x \rightarrow-\infty, f(x) \rightarrow$

Number of turning points: Lowest Degree: \qquad
\qquad Real Zeros: \qquad
y-intercept:
Relative maximum (s):
Relative Minimums):
As $x \rightarrow+\infty, f(x) \rightarrow$
As $x \rightarrow-\infty, f(x) \rightarrow$

Number of turning points: Lowest Degree:
Real Zeros: y-intercept:
Relative maximums):
Relative Minimums):
As $x \rightarrow+\infty, f(x) \rightarrow$
As $x \rightarrow-\infty, f(x) \rightarrow$
20. $f(x)=5(x-1)(x-2)(x-3)$

Zoom: 6 Zstandav
max : $y=1.92$
min : $y=-1.92$
$L * \notin R$

22. $f(x)=x^{4}-2 x-3$
max: none
min: $y=-4.19$
X_{1}
Zeros:
X_{2}
y-int:

$y=1.2 \times 10^{-12} \approx \phi$

$\max : y=4$
$\min : y=\varnothing$
$x_{1}=-2$
Zeros: $X_{2}=1$
y-int: $y=2 \quad\binom{$ set }{$x=0}$
23. $f(x)=2(x+2)^{2}(x+4)^{2}$

