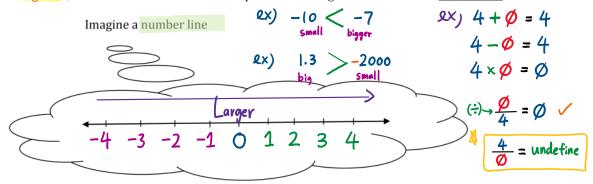
Printout

February 1, 2023

+/-/×/÷


decimals / fraction / negative

Grade 9 Math

Unit 3: Rational Numbers

Section 3.1: What is a Rational Number?

Integers, I, is a set of numbers that include positive and negative numbers and **Zevo**

These numbers are all integers. The set of integers does not include <u>decimals</u> or <u>fractions</u> as a fraction m

Rational Numbers, Q, is any number that can be written in the form, where m and n are both integers but $n \neq 0$.

Example: Using any two integers create a fraction and change to a decimal.

1 a).
$$\frac{1}{3} = \frac{-2}{1} = -2$$
 *** notice $\frac{-2}{1}$ is an integer $\frac{-2}{1}$ and a rational number. *** any integer can be written as a fraction using $\frac{1}{1}$ as the denominator. $\frac{25}{1} = \frac{25}{1}$ 0. $\frac{137}{1} = \frac{137}{1}$

8)
$$7.0$$
64

60

56

c). $\frac{7}{8} = 0.875$

*** 0.6 is a Repeating decimal and a rational number.

(stop)

15 (a) $\frac{7}{8} = 0.875$

16 (stop)

17 (stop)

18 (a) $\frac{7}{8} = 0.875$

19 (a) $\frac{7}{8} = 0.875$

19 (a) $\frac{7}{8} = 0.875$

10 (a) $\frac{7}{8} = 0.875$

11 (b) $\frac{7}{8} = 0.875$

12 (a) $\frac{7}{8} = 0.875$

13 (a) $\frac{7}{8} = 0.875$

15 (a) $\frac{7}{8} = 0.875$

16 (a) $\frac{7}{8} = 0.875$

17 (b) $\frac{7}{8} = 0.875$

18 (a) $\frac{7}{8} = 0.875$

19 (b) $\frac{7}{8} = 0.875$

19 (c) $\frac{7}{8} = 0.875$

10 (a) $\frac{7}{8} = 0.875$

10 (a) $\frac{7}{8} = 0.875$

10 (a) $\frac{7}{8} = 0.875$

10 (b) $\frac{7}{8} = 0.875$

11 (c) $\frac{7}{8} = 0.875$

12 (c) $\frac{7}{8} = 0.875$

c).
$$\frac{7}{8} = 0.875$$
 *** $\frac{0.875}{0.875}$ is a terminating decimal and a rational number

$$\frac{40}{25}$$
 d). $\frac{100}{25} = 4$ *** $\frac{4}{25}$ is an integer and a rational number.

Therefore, rational numbers include all integers, fractions, terminating decimals and repeating decimals.

2. Identify the rational numbers below:

a).
$$\frac{-1}{4}$$
 \longrightarrow rational \rightarrow fraction

a).
$$\frac{-1}{4}$$
 \longrightarrow rational \rightarrow fraction

b). $\sqrt{9}$ \longrightarrow $3 = \frac{3}{1}$ (rational) - integer

c). $\frac{-4}{-9}$ \longrightarrow $\frac{4}{9}$ (rational)

c).
$$\frac{-4}{-9}$$
 \longrightarrow $\frac{4}{9}$ (rational)

d).
$$\sqrt{75}$$
 = 8.660254038...

e).
$$\pi$$
 = 3.1415926535...

d). √75
= 8.660254038...
e). 77
= 3.1415926535...

These numbers are non - repeating and non-terminating decimals. → can't write as a fraction

These types of numbers are called

These types of numbers are called irrational numbers, \overline{Q} .

Compare and Order Rational Numbers

1. Use > , < , or = to determine which rational number is greater, where possible. 0.375>0.360

* use a common denominator

Larger numerator represents the greater fraction.

* already has a common denominator so look at the numerators.

With negative numbers closer to zero is greater,

since

- * for two positive fractions which have <u>common numerators</u>, the <u>Smallest</u> denominator is the greater fraction.
- d). $\frac{-2}{7} < \frac{-2}{9}$ $\frac{2}{7} > \frac{2}{9}$

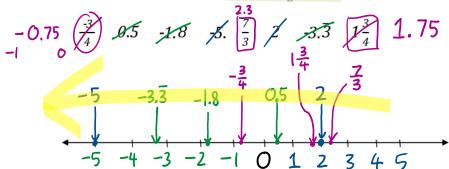
 - * for negative fractions which have common numerators, the <u>larger</u> denominator is the greater fraction.
- e). $\frac{-3}{4} < \frac{3}{4}$
- * **_positive** is always greater than negative.
- * these fractions are called opposite For every positive fraction, or decimal, there is a corresponding negative fraction or decimal.

$$(\frac{1}{31})$$
 and $\frac{-1}{31}$ are opposites)

(1.31 and -1.31 are opposites).

- f). $\frac{-10}{4}$ -2.8
 - * change $-\frac{16}{4}$ to a decimal or change -2.8 to a fraction.

$$\begin{array}{c}
10 \\
4
\end{array}$$


$$\begin{array}{c}
2.5 \\
8 \\
2.0 \\
3
\end{array}$$

- g). $\frac{7}{8} = \frac{7}{-8}$ * Regardless of the position of the negative sign, these fractions are $\frac{2}{8}$. A positive divided by a negative is always negative.

$$$0.25 = \frac{1}{4}$0.75 = $\frac{3}{4}$$$

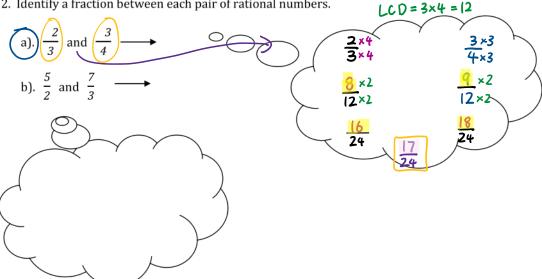
$$$0.50 = \frac{2}{4}$$

ace these rational numbers in descending order.

Descending Order (from largest to smallest)

$$\frac{7}{3}$$
, $\frac{2}{14}$, $\frac{3}{4}$, $\frac{3}{6}$, $\frac{3}{4}$, $\frac{3}{6}$, $\frac{3}{6}$, $\frac{3}{6}$

Writing a Rational Number between two given numbers.


1. Identify a decimal between each pair of rational numbers.

Identify a decimal between each pair of rational numbers.

a)
$$\left(\frac{-1}{2}\right)$$
 and $\left(\frac{-1}{4}\right)$ \rightarrow -0.50 \leftarrow -0.25 \rightarrow -0.31

b). $-0.2\frac{50}{}$ and $-0.2\frac{60}{}$ $A_{\text{NS}} = -0.257$

2. Identify a fraction between each pair of rational numbers.

