1. What is the difference between average velocity and instantaneous velocity?
2. What is the difference between velocity and speed?
3. What is the definition of acceleration?
4. A high-powered racing car accelerates from rest at a rate of $7.0 \mathrm{~m} / \mathrm{s}^{2}$. How fast will it be moving after 10.0 s ? Express your answer in m / s and km / h.
5. A child on a toboggan slides down a snowy hill, accelerating uniformly at $2.8 \mathrm{~m} / \mathrm{s}^{2}$. When the toboggan passes the first observer, it is travelling with a speed of $1.4 \mathrm{~m} / \mathrm{s}$. How fast will it be moving when it passes a second observer who is 2.5 m downhill from the first observer?
6. A space vehicle is orbiting the earth at a speed of $7.58 \times 10^{3} \mathrm{~m} / \mathrm{s}$. In preparation for a return to earth, it fires retro-rockets which provide an acceleration in the opposite direction of $78.4 \mathrm{~m} / \mathrm{s}^{2}$. Ignoring any change in altitude that might occur, how long will it take the vehicle to slow down to $1.52 \times 10^{3} \mathrm{~m} / \mathrm{s}$?
7. A truck is moving along at $80 \mathrm{~km} / \mathrm{h}$ when it hits a gravel patch, which causes it to accelerate in the opposite direction at $1.4 \mathrm{~m} / \mathrm{s}^{2}$. How far will the truck travel before it slows down to 20.0 km $/ \mathrm{h}$?
8. Avery, a frustrated physics student, drops a physics textbook off the top of the CN tower. If the tower is $5.3 \times 10^{2} \mathrm{~m}$ high, how long will the book take to reach the ground, assuming there is negligible air resistance?
9. If an electron inside a TV tube accelerates in a space of 5.0 cm from rest to 10.0% of the speed of light, what is its acceleration? (the speed of light is $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
10. Snoopy is taking off in his World War I biplane. He coasts down the runway at a speed of $40.0 \mathrm{~m} / \mathrm{s}$, then accelerates for 5.2 s at a rate of $4.90 \mathrm{~m} / \mathrm{s}^{2}$. How fast is the plane moving after the 5.2 s ?
11. A woman biker is driving along the highway at $80.0 \mathrm{~km} / \mathrm{h}$, in a $60 \mathrm{~km} / \mathrm{h}$ speed zone. She sees a police car ahead, so she brakes so her bike accelerates in the opposite direction at $2.22 \mathrm{~m} / \mathrm{s}^{2}$. How far along the road will she travel before she is at the legal speed limit?
12. Spiderman is crawling up a building at a rate of $0.50 \mathrm{~m} / \mathrm{s}$. Seeing Spiderwoman 56 m ahead of him, he accelerates at a rate of $2.3 \mathrm{~m} / \mathrm{s}^{2}$.
a) How fast will he be moving when he reaches Spiderwoman?
b) How much time will it take to reach Spiderwoman?
c) When he reaches Spiderwoman, Spiderman discovers that she is a Black Widow and, as you may know, Black Widows eat their mates! If he is 200.00 m from the road below, how long will it take him to fall to the safety of the road.
13. A stone is dropped from the top of a tall building. How long will the stone take to pass a window that is 2.0 m high if the top of the window is 20.0 m below the point from which the stone is dropped?
14. A car accelerates from rest at $6.00 \mathrm{~m} / \mathrm{s}^{2}$. How far does it move between 10.0 s and 15.0 s ?
15. A skier accelerates steadily down a hill from $3.50 \mathrm{~m} / \mathrm{s}$ to $11.40 \mathrm{~m} / \mathrm{s}$ in 4.20 s .
a) What is the average speed for the trip?
b) What distance is travelled?
16. An arrow shot straight up into the air at $50.0 \mathrm{~m} / \mathrm{s}$ accelerates downward at $9.8 \mathrm{~m} / \mathrm{s}^{2}$ until it reaches a speed of zero at its peak. Draw a velocity vs. time graph of this motion.
17. A glider on an air track is made to accelerate uniformly by tilting the track at a slight angle. The distance travelled by the glider was measured at the end of each 0.10 s interval and the following data was gathered:

distance, \boldsymbol{d} (cm)	0	0.025	0.100	0.225	0.400	0.625
time, $\boldsymbol{t}(\mathbf{s})$	0	0.100	0.200	0.300	0.400	0.500

a) Plot a graph with distance, d, on the y-axis and time, t, on the x-axis.
b) Plot a second graph with d on the y-axis and t^{2} on the x-axis.
c) Use the slope of your second graph to figure out the acceleration of the glider on the air track. (Hint: Write the equation of the line in $y=m x+b$ form and compare it to the equation $d=v_{i} t+1 / 2 a t^{2}$.)
18. Use the following position vs. time graph to answer the following:
a) What is the total displacement of the car between 30 and 60 s ?
b) When is the car moving in the positive direction?
c) What is the velocity of the car between 0 and 30 s ?
d) What is the instantaneous velocity of the car at 60 s?
e) What is the average speed of the car between
 0 and 150 s ?
19. Use the following velocity vs. time graph to answer the following:
a) When is the car moving in the positive direction?
b) When does the car have a positive acceleration?
c) Describe the motion of the car from 25 to 40 s .
d) What is the total displacement of the car over the 40 s ?
e) What is the total distance travelled by the car over the 40 s ?
f) What is the average velocity of the car over the 40 s ?

