2)

$$
V_{w}=50 \mathrm{k} / \mathrm{h}
$$

Trig Method
: Component Method

$$
\begin{aligned}
& v_{T}^{2}=v_{1}^{2}+v_{N}^{2}-2 v_{p} v_{N} \cos 34^{\prime} \\
& V_{T}=161 \mathrm{~km} / \mathrm{h} \\
& \frac{\sin \theta}{50}=\frac{\sin 34}{160.99} \\
& \theta=10^{\circ} \\
& \alpha=90-34-10^{\circ} \\
& =46^{\circ} \text { Eff }
\end{aligned}
$$

$$
\longleftarrow V_{w x}=-50 k_{n} / h
$$

$$
\begin{aligned}
\Sigma v_{x} & =v_{p x}+v_{w x} \\
& =165.8-90 \\
& =115.8 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

$$
\sum v_{y}=111.8 \mathrm{~km} / \mathrm{h}
$$

$1 \quad V i,{ }^{1} \quad V_{y}=111.8 \mathrm{~km} / \mathrm{h}$
' θ

$$
\begin{aligned}
& V_{T}=\sqrt{V_{x}^{2}+V_{y}^{2}}=161 \mathrm{~K}_{m} / h \\
& \theta=\tan ^{-1}\left(\frac{111.8}{115.8}\right)=\begin{array}{l}
44^{\circ} \\
N_{0} f E
\end{array}
\end{aligned}
$$

3)

$$
\begin{aligned}
& v_{i}=4.8 \mathrm{mls} \\
& \begin{aligned}
\Delta v=v_{f}-v_{i}
\end{aligned} \\
& \Delta v^{2}=v_{1}^{2}+v_{i}^{2}-2 v_{f} v_{i} \cos 57
\end{aligned}
$$

5)

x	$y @ t_{\frac{1}{2}}$	
$V_{x}=23.9 \mathrm{~m} / \mathrm{s}$	$V_{y}=0 \quad y^{2}=v_{0}^{2}+2 a d$	
$d_{x}=$	$V_{y_{0}}=$	$v_{0}=\sqrt{-2 a d}$
$t=2 x t_{\frac{1}{2}}=4.24 \mathrm{~s}$	$a_{y}=-9.80 \mathrm{~m} / \mathrm{s}^{2} \quad=20.8 \mathrm{~m} / \mathrm{s}$	
$d_{y}=22 \mathrm{~m}$	$y^{0}=v_{0}+a t_{\frac{1}{2}}$	
	$=101 \mathrm{~m}$	$t_{\frac{1}{2}}=\quad$

$$
\begin{aligned}
\tan 41=\frac{V_{y o}}{V_{x}} \quad V_{x} & =\frac{V_{y p}}{\tan 41} \\
& =23.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Either it hit on the way up...
6.)

or the way down...

The good news is the final by will be the same speed but + on the way up and - on the way down.
So let's find that first.

$$
\begin{aligned}
& \\
&=.25 \mathrm{mls} \\
& \pi_{1} \\
& i v_{0}=25 \sin 36.9 \\
& 36.9-. y=15.01 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x}{v_{x}=19.99 \mathrm{~m} / \mathrm{s}} \\
& d x= \\
& t= \\
& x=v_{x} t \\
& =(19.99)(0.2153) \\
& =4.3 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
d x & =v_{x} t \\
& =(19.99)(2.848) \\
& =56.9 \mathrm{~m}
\end{aligned}
$$

$$
V_{x}=25 \cos 36.9=19.99 \mathrm{~m} / \mathrm{s}
$$

On the way up:

$$
\begin{aligned}
v=v_{0}+a t \quad & t=\frac{v-v_{0}}{a}=\frac{12.90-15.01}{-9.80} \\
& =0.2153 \mathrm{~s}
\end{aligned}
$$

On the way down:

$$
\begin{aligned}
t & =\frac{v-v_{0}}{a}=\frac{-12.90-15.01}{-9.80} \\
& =2.848 \mathrm{~s}
\end{aligned}
$$

Speeding Car (cost v)

$$
\begin{aligned}
& V_{1}=30 \mathrm{~m} / \mathrm{s} \\
& d_{1}=\leftarrow \\
& t_{1}=<\quad V_{1}=\frac{d_{1}}{t_{1}} \\
& d_{1}=v_{1} t_{1}=30 t_{1} \\
& =30 t_{2}
\end{aligned}
$$

Police Car (const. a)

$$
\begin{aligned}
V_{2} & = \\
V_{20} & =0 \\
a_{2} & =3 \mathrm{~m} / \mathrm{s}^{2} \\
\rightarrow d_{2} & =d_{1}=30 t_{2} \\
\rightarrow t_{2} & =
\end{aligned}
$$

$$
\begin{aligned}
d_{2} & =v_{2} t_{2}^{0}+\frac{1}{2} a_{2} t_{2}^{2} \\
30 t_{2} & =\frac{1}{2} a_{2} t_{2}^{2} \\
30 t_{2} & =\frac{1}{2}(3) t_{2}^{2} \\
t_{2} & =20 \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
d_{1} & =v_{1} t_{1} \\
& =(30)(20)=600 \mathrm{~m}
\end{aligned}
$$

8.)

$$
\begin{aligned}
\sin 41^{\circ}=\frac{V_{\text {river }}}{V_{\text {bout }}} \quad V_{\text {river }} & =(4.1) \sin 41 \\
& =2.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
\cos 41=\frac{V_{R}}{V_{\text {boat }}} \quad V_{R} & =(4.1) \sin 41^{\circ} \\
& =3.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Vtotal

If the x and y -components of the initial and final speeds are equal then they will form congruent triangles, where the hypotenuses are equal.

OK, so this one gets ugly... too ugly for a test question. But I'll give you $\phi 1000000$ (Mnyjics dollars) if you can show
Bonus:
 me a simpler solution.

$$
\begin{aligned}
& \begin{array}{l}
\sin \theta \\
\hline
\end{array} \\
& \frac{\sin \theta}{\cos \theta}=\tan \theta: \quad d_{y}=d_{x} \frac{\sin 51}{\cos 5)^{\prime}}+\frac{1}{2} a \frac{d_{x}^{2}}{v^{2} \cos ^{2} s 1} \\
& d_{y}-d_{x} \tan 51=\frac{1}{2} a \frac{d x^{2}}{v^{2} \cos ^{2} 51} \\
& V^{2}=\frac{1 a d_{x}^{2}}{\left(d_{y}-d_{x} \tan 51\right) \cos ^{2} 51} \\
& V=\sqrt{\frac{1}{\frac{2 a d_{x}^{2}}{\left(d_{y}-d_{x} \tan 51\right) \cos ^{2} 51}}} \\
& V=\sqrt{\frac{\frac{1}{2}(-9.8)(20)^{2}}{\left(10-20 \tan 5 i^{\circ}\right) \cos ^{2} 51}}=18.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

