Unit 1: Kinematics in 1D
1 - Vector and Scalar, Distance and Position
There are two types of measurement: with \qquad or without.

Scalars: Magnitude only	Vectors: Magnitude and direction

- Kinematics: The study of an object's \qquad .

Position, Distance and Displacement

- Distance (): the separation between two points. Ex, the length of an object. Usually measures in \qquad . No
\qquad needed
ex)
- Displacement (or): A measure of the change in position. Needs \qquad
$\Delta d=$ final position - initial position.
The \qquad of the value for indicates the direction.
ex)
Ex 1: A student walks 5 m east and then 3 m west.
a) What is the distance (scalar) travelled?
b) What is the student's displacement (vector)?

Ex 2: A cat walks 5 m left to get a snack (gold fish?) and then 5 m right to go back to bed.
a) What is the distance (scalar) travelled?
b) What is the displacement (vector)?

Traditionally we assign \qquad and \qquad as positive (+) and \qquad and \qquad as negative.

Speed (v): change in \qquad per \qquad

- Speed is a \qquad
Velocity (\vec{v}) : change in \qquad per \qquad

Ex1): A student travels 11 m north and then turns around and travels 25 m south. If the total time of travel is 12 s , find:
a) The student's average speed.
b) The student's average velocity.

- Velocity is a \qquad

1) How long does it take a car traveling at $45 \mathrm{~km} / \mathrm{h}$ to travel 100.0 m ?
2) How far does a skateboarder travel in 22 s if his average velocity is $12.0 \mathrm{~m} / \mathrm{s}$?
3) A shopping cart moves from a point 3.0 m West of a flagpole to a point 18.0 m East of the flagpole in 2.5 s . Find its average velocity.

Worksheet 1b - Average Speed and Velocity

1. A high school bus travels 240 km in 6.0 h . What is its average speed for the trip? (in km/h)
2. A spider travels across a driveway 3.6 m wide with a speed of $14 \mathrm{~cm} / \mathrm{s}$. How long will it take to cross the driveway?
3. A basketball player steals the ball and runs the length of the court in 8.5 sec at a speed of $5.0 \mathrm{~m} / \mathrm{s}$. How long is the court?
4. if a car is traveling at $25 \mathrm{~m} / \mathrm{s}$, how far does it travel in 1.0 hour?
5. A caterpillar travels across the length of a 2.00 m porch in 6.5 minutes. What is the average velocity of the caterpillar in m / s ?

Worksheet 1b - Average Speed and Velocity

6. A motorist traveling on a straight stretch of open highway sets his cruise control at $90.0 \mathrm{~km} / \mathrm{h}$. How far will he travel in 15 minutes?
7. A motorcycle travels $90.0 \mathrm{~km} / \mathrm{h}$. How many seconds will it take the motorcycle to cover $2.10 \times 10^{3} \mathrm{~m}$?
8. *A hiker is at the bottom of a canyon facing the canyon wall closest to her. She is 280.5 m from the /wall and the sound of her voice travels at $340.0 \mathrm{~m} / \mathrm{s}$ at that location. How long after she shouts will she hear her echo?
9. **A woman from Pasadena makes a trip to a nearby shopping mall that is located 40.0 km from her home. On the trip to the mall she averages $80.0 \mathrm{~km} / \mathrm{h}$ but gets a speeding ticket upon her arrival. On the return trip she averages just $40.0 \mathrm{~km} / \mathrm{h}$. What was her average speed for the entire trip?
10. ${ }^{* * * A}$ cross-country rally car driver sets out on a 100.0 km race. At the halfway marker (50.0 km), her pit crew radios that she has averaged only $80.0 \mathrm{~km} / \mathrm{h}$. How fast must she drive over the remaining distance in order to average 100.0 km / h for the entire race?
$\begin{array}{lllllllll}\text { Ans 1) } 40 \mathrm{~km} / \mathrm{h} & \text { 2) } 26 \mathrm{~s} & \text { 3) } 43 \mathrm{~m} & \text { 4) } 9 \times 10^{4} \mathrm{~m} & \text { 5) } 5.1 \times 10^{-3} \mathrm{~m} / \mathrm{s} & \text { 6) } 23000 \mathrm{~m} & \text { 7) } 84 \mathrm{~s} & 8) 1.650 \mathrm{~s} & \text { 9) } 53.3 \mathrm{~km} / \mathrm{h} \\ \text { 10 }\end{array} 133$ km/h

Unit 1: Kinematics in 1D

2 - Position-time graph and Velocity-time graph

Position-time ($\vec{d}-\mathrm{t}$) graphs show an object's \qquad as a function of time.
Independent variable (x-axis) is \qquad . The dependent variable (y-axis) is \qquad .

Position vs Time Graph

Velocity vs Time Graph

Lets calculate the slope for the line made by the dots:	Slope of d-t graph $=\ldots$
	If d-t graph shows a straight line \rightarrow

Relating Position-Time Graph to Velocity-Time Graph
D-T Graph 1
D-T Graph 2
D-T Graph 3

For practice, find average velocity from:
$\mathrm{t}=0 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$
$t=2 s$ to $t=3 s$
$t=3 s$ to $t=5 s$
$t=5 s$ to $t=6 s$
$t=2 s$ to $t=6 s$
$t=3 s$ to $t=6 s$

Ex2) A rocket takes off and the height is recorded as follows.
a) Find the average velocity.
b) Graph the position vs time and find the instantaneous velocity at 20 and 40 seconds.

1. Use the following position vs. time graph to answer the following:
a) What is the speed of the object between 0 and 30 minutes?
b) What is the speed of the object 30 and 45 minutes?
c) What is the average speed of the object from 0 to 45 minutes?

2. Use the following position vs. time graph to answer the following:
a) When is the object moving the fastest?
b) When is the object moving in the positive direction?
c) When is the object moving in the negative direction?
d) When is the object not moving?
e) What is the average velocity of the object between 0 and 20 seconds?

3. Use the following position vs. time graph to answer the following:
a) What is the average speed of the object between 0 and 0.80 s ?
b) What is the instantaneous speed of the ball at 0.60 s ?

4. Use the following position vs. time graph to answer the following:
a) What is the average speed of the object between 0 and 50 s ?
b) What is the instantaneous speed of the object at 25 s ?
c) When is the object speeding up?
d) When is the object slowing down?

Unit 1: Kinematics in 1D

3 - Velocity and Acceleration Time Graph

Acceleration

A vector quantity that describes \qquad . Denoted a or \vec{a}.

- Conceptually, acceleration is to velocity as velocity is to \qquad -.
- For this class we will always assume that acceleration is \qquad $\vec{v}_{a v g}=$
- Note that any object with zero acceleration has \qquad velocity.
- The units of acceleration: \qquad . This is usually written as \qquad —.
unit

Example: A child rolls a ball up a hill at $4.5 \mathrm{~m} / \mathrm{s}$ [forward]. After 5.00 seconds, the ball is rolling back with a velocity of $-1.5 \mathrm{~m} / \mathrm{s}$ [forward]. What is the ball's acceleration?

Velocity-Time Graphs

Lets look at the slope calculation for such a graph
$m=\frac{\text { rise }}{r u n}=\frac{\Delta y}{\Delta x}=$

Example: Use the graph to determine...
a) Velocity at $t=2 \mathrm{~s}, \quad 5 \mathrm{~s}, \quad 8 \mathrm{~s}$?
b) Acceleration from

$t=0.0-4.0 \mathrm{~s}$	$\mathrm{t}=4.0-7.0 \mathrm{~s}$	$\mathrm{t}=7.0-10.0 \mathrm{~s}$

Calculating Displacement from Velocity-Time Graphs

$$
A_{\text {rectangle }}=l \cdot w \quad A_{\text {triangle }}=\frac{1}{2} b \cdot h
$$

Slope of V-T graph =

Let's calculating the total area under the curve for the v-t graph.

Area under the V-T graph to the x -axis =

Important!! if part of the graph is below the x-axis under the $0 \mathrm{~m} / \mathrm{s}$ line (that is, the velocity is negative), the
\qquad segment is also negative.

Example: Find the total displacement of the car whose velocity-time graph is shown above between:

$t=0.0$ and $t=2.0$	$t=2.0$ and $t=5.0$	$t=5.0$ and $t=6.0$	$t=0.0$ and $t=6.0$

From Velocity-Time Graph to Displacement-Time Graph and Acceleration-time graph

Worksheet 3a- Graphs of Motion (V-T Graph)

5. Use the following velocity vs. time graph to answer the following:
a) What is the displacement of the object over the 25 seconds?
b) What is the acceleration of the object in this time?

6. Use the following velocity vs. time graph to answer the following:
a) What is the displacement of the object over the 50 seconds?
b) Describe the motion of the object between 0 and 20 s .
c) When is the object moving in the positive direction? negative direction?
d) What is the acceleration of the object between 20 and 30 s ?

e) What is the acceleration of the object between 30 and 50 s?
f) What is the average acceleration of the object over the 50 seconds?
g) What is the average speed of the object over the 50 seconds?
7. Use the following velocity vs. time graph to answer the following:
a) When is the velocity of the object the greatest?
b) When is the acceleration of the object the greatest (most positive)?
c) When is the acceleration of the object zero?
d) When is the object slowing down?
e) What is the displacement of the object over the 50 s ?

8. Use the following velocity vs. time graph to answer the following:
a) When is the object moving in the positive direction?
b) When is the object moving in the negative direction?
c) What is the displacement of the ball from 0 to 45 s ?
d) What is the displacement of the ball from 45 to 85 s?
e) What is the total displacement of the ball between 0 and 85 s ?
f) What is the total distance travelled between 0 and 85 s ?
g) What is the average velocity over the 85 seconds?

Lets summarize what we have learned about d-t, v-t and a-t graph so f

For d vs. t graphs

- Slope $=\frac{\text { rise }}{\text { run }}=\frac{\text { displacement }}{\text { time }}=$

For v vs. t graphs

- Slope $=\frac{\text { rise }}{\text { run }}=\frac{\text { velocity }}{\text { time }}=$
- Area under graph $=$ velocity \times time $=$
A) Signs on velocity and acceleration: Speeding up or slowing down?

Velocity	Acceleration	Speeding up/down?	Ex.

B) From Velocity-Time Graph to Displacement-Time Graph and Acceleration-time graph

D-T Graph 1
D-T Graph 2
D-T Graph 3

V-T Graph 1

A-T Graph 1

A-T Graph 2
A-T Graph 3

D-T Graph 4

D-T Graph 6

D) Graphs combined (with number)

For each question, use the given graph to complete the other two.
1.

2.

show values

show values

show values
initial position $=0$
5.

show values
initial position $=0$

show values initial position $=0$

show values

show values initial velocity $=0$

show values
initial velocity $=12$

4 - Kinematic Equations: The big three

Lets summarize what we have learned about d-t, v-t and a-t graph so f

1)	2)
Ex: a car traveling at $7.0 \mathrm{~m} / \mathrm{s}$ East speeds up to $22.0 \mathrm{~m} / \mathrm{s}$ East in 1.7 s . What is its acceleration?	Ex: A sprinter starts from rest and accelerates uniformly. He travels 100.0 m south in 9.69 s . What was his acceleration?

\square
Ex: A banana boat accelerates from $15.0 \mathrm{~km} / \mathrm{h}$ at $2.00 \mathrm{~m} / \mathrm{s}^{2}$. How far has it traveled when it reaches $30.0 \mathrm{~km} / \mathrm{h}$?

Ex 1: A Rocket Truck is traveling at $16.0 \mathrm{~m} / \mathrm{s}$ when a plane passes it. It immediately hits the jets and accelerates at 14.0 $\mathrm{m} / \mathrm{s}^{2}$ for 3.25 s
a) What final velocity does it reach?
b) how far does it travel in this time?

Ex 2: An arrow strikes a can at $32.0 \mathrm{~m} / \mathrm{s}$ and exits at $31.0 \mathrm{~m} / \mathrm{s}$. If the arrow is 42 cm long find its acceleration as it pierced the can. Ignore the width of the can.

Ex 3: A BMW and an F1 car both cross the finish line traveling at $200.0 \mathrm{~km} / \mathrm{h}$. The BMW comes to a stop in 4.05 s and the F1 in 2.12 s. How much further did the BMW travel while stopping than the F1 car?

Worksheet 4 - Kinematic Equations

1. A ball rolling down a hill was displaced 19.6 m while uniformly accelerating from rest. If the final velocity was $5.00 \mathrm{~m} / \mathrm{s}$. what was the rate of acceleration?

$$
0.638 \mathrm{~m} / \mathrm{s}^{2}
$$

2. A car starts from rest and accelerates uniformly to reach a speed of $21 \mathrm{~m} / \mathrm{s}$ in 7.0 s . What was the speed of the object after 2.0 seconds?
(!!) 3. A bike rider accelerates uniformly at $2.0 \mathrm{~m} /$ s^{2} for 10.0 s . If the rider starts from rest, calculate the distance traveled in the fourth second.
(i.e. between $t=3 \mathrm{~s}$ and $\mathrm{t}=4 \mathrm{~s}$).
3. The Jamaican bobsled team hit the brakes on their sled so that it decelerates at a uniform rate of 0.43 $\mathrm{m} / \mathrm{s}^{2}$. How long does it take to stop if it travels 85 m before coming to rest?

20 sec

Bonus: A driver of a car going $90 \mathrm{~km} / \mathrm{h}$ suddenly sees the lights of a barrier 40.0 m ahead. It takes the driver 0.75 s before he applies the brakes (this is known as reaction time). Once he does begin to brake, he decelerates at a rate of $10.0 \mathrm{~m} / \mathrm{s}^{2}$.
a) Does he hit the barrier?
b) SUPER-BONUS: What would be the maximum speed at which the car could travel and NOT hit the barrier 40.0 m ahead?
4. If a bullet leaves the muzzle of a rifle at $600.0 \mathrm{~m} / \mathrm{s}$, and the barrel is 0.90 m long, what was the acceleration of the bullet while in the barrel?

$$
2 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

- In the absence of air friction...
- Near Earth's surface the acceleration is

Example: A student drops their homework down a wishing well. After 2.4 s it hits the water at the bottom. How deep is the well?

Example:

A football is kicked straight up in the air at $15 \mathrm{~m} / \mathrm{s}$.
a) How high does it go?
b) What is its total hangtime?

Example: A student stands on the edge of a 45.0 m high cliff. They throw their physics homework straight up in the air at $12.0 \mathrm{~m} / \mathrm{s}$.
a. How long does it take to come back down to the same height as the student?
b. If it falls all the way to the bottom of the cliff, how fast is it traveling when it hits the ground?

Worksheet 5 - Uniform Accelerated Motion

1) Bumblebee jumps straight upwards with a velocity of $14.0 \mathrm{~m} / \mathrm{s}$. What is his displacement of after 1.80 s ?
2) Sonic (you know, the Hedgehog) rolls up a slope at 9.4 m / s. After 3.0 s he is rolling back down at $7.4 \mathrm{~m} / \mathrm{s}$. How far up the hill is he at this time?
(9.32 m)
3) A surprisingly spherical decepticon is rolled up a constant slope with an initial velocity of $9.3 \mathrm{~m} / \mathrm{s}$. What is the acceleration of the decepticon if its displacement is 1.9 m up the slope after 2.7 s?

$$
\left(-6.4 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

3) Optimus Prime coasts up a hill initially at $11.0 \mathrm{~m} / \mathrm{s}$. After
b) $8.0 \mathrm{~m} / \mathrm{s}$ downwards?
4) Sick of his guff, Optimus decides to throw Megatron down off the top of a building at $5.0 \mathrm{~m} / \mathrm{s}$. Megatron hits the ground traveling at $32.0 \mathrm{~m} / \mathrm{s}$.
a. How long does it take to hit the ground?
b. How far does he fall?

$$
(-51 \mathrm{~m})
$$

7) Mario rolls a coin up a slope at $2.0 \mathrm{~m} / \mathrm{s}$. It travels 2.7 m , comes to a stop and rolls back down. What is the coin's entire time of travel?
8) While strolling along on Planet X an astronaut decides to throw a hammer and a feather upwards at $5.0 \mathrm{~m} / \mathrm{s}$. They both return to the point of release in 3.0 s . What is the acceleration due to gravity on Planet X.
9) Princess Toadstool stands on the edge of a 30.0 m high cliff. She throws Bowser upwards at 20.0 m/s. If Bowser falls all the way to the bottom of the cliff, find: a. his velocity when he hits the ground.

(-31.4 m/s)

b. the time it takes to hit the ground.

When we draw vectors we represent them as \qquad -

Whenever we add vectors we use...

To find the total or resultant vector, simply draw...

Vector Addition Methods:

1. Tip-to-Tail (for drawing general direction)
2. Adding Components (for magnitude) and Trigonometry (for accurate direction)

Add the vectors and find their resultant magnitudes and directions

1) 2.2 m South and 1.8 m North
2) 220 m North and 80 m West

When adding vectors does it matter which one you add first?

Ex1) : A student in a canoe is trying to cross a 45 m wide river that flows due East at $2.0 \mathrm{~m} / \mathrm{s}$. The student can paddle at $3.2 \mathrm{~m} / \mathrm{s}$.
a. If he points due North and paddles how long will it take him to cross the river?
b. What is his total velocity relative to his starting point in part a ?
c. If he needs to end up directly North across the river from his starting point, what heading should he take?
d. How long will it take him to cross the river at this heading?

Vector Addition - Trig Method

In the previous example we added perpendicular vectors which gave us a nice simple right triangle. In reality it's not always going to be that easy.

Ex2) A bird flies at $15 \mathrm{~km} / \mathrm{h} 30^{\circ} \mathrm{N}$ of E for 2.5 hr and then changes heading and flies at $20 \mathrm{~km} / \mathrm{h} 70^{\circ} \mathrm{W}$ of N for 1.5 hr . What was its final displacement?

In order to solve non-right angle triangles, we will need to be familiar with the Sine Law and the Cosine Law.

Sine Law:

Cosine Law:

Vector Addition - The Component Method

There is another method that we can use when adding vectors. This method is a very precise, stepwise approach; however, it is the only way we can add 3 or more vectors.

- Draw each vector
- Resolve/break each vector into x and y components
- Find the total sum of x and y vectors
- Add the x and y vectors
- Solve using trig

REMEMBER: When using x and y components...
Ex3. An airplane heading at $450 \mathrm{~km} / \mathrm{h}, 30^{\circ}$ north of east encounters a $75 \mathrm{~km} / \mathrm{h}$ wind blowing towards a direction 50° west of north. What is the resultant velocity of the airplane relative to the ground?

	X-Component	Y-Component
Air Velocity		
Wind Velocity		
Resultant		

Total Resultant:

Vector Subtraction

With vectors a negative sign indicates...

When subtracting vectors we still draw them tip to tail, except...

We generally subtract vectors when dealing with a \qquad in a vector quantity.

Recall:
Change =

Draw the Following

Ex 4: A cyclist is traveling at $14 \mathrm{~m} / \mathrm{s}$ west when he turns due north and continues at $10 \mathrm{~m} / \mathrm{s}$. If it takes him 4.0 s to complete the turn what is the magnitude and direction of his acceleration?

1. Determine the horizontal and vertical components of the following vectors.
a) $1.5 \mathrm{~m} 22^{\circ}$ south of east
b) $180 \mathrm{~km} / \mathrm{h} 40^{\circ}$ east of north
c) $9.00 \times 10^{4} \mathrm{~kg} \mathrm{~m} / \mathrm{s} 6.00^{\circ}$ north of west
d) $0.40 \mathrm{~N} 33^{\circ}$ west of south
2. Add the following displacement vectors. Be sure to determine both the magnitude and direction of the resultant vector.
a) 0.50 m south; 1.20 m north
b) 19 m west; 19 m south
c) 9.0 km north; $3.4 \mathrm{~km} \mathrm{25}{ }^{\circ}$ east of south
d) 145 m south; 82 m west
e) $1500 \mathrm{~km} 40^{\circ}$ east of north; 2700 km south
f) $984 \mathrm{~m} 35.0^{\circ}$ north of east; $424 \mathrm{~m} 10.0^{\circ}$ north of east
3. A duck is initially swimming at a velocity of $20.0 \mathrm{~cm} / \mathrm{s}$ to the east. It is later seen swimming at a velocity of $20.0 \mathrm{~cm} / \mathrm{s}$ to the south. What is the duck's change in velocity?
4. Katelyn drives down an 15° incline (measured above the horizontal). If she has descended 20.0 m vertically, how far has she driven along the incline?
5. Bob is swimming to the east across a river. If he swims at a speed of $2.6 \mathrm{~m} / \mathrm{s}$ with respect to the water and there is a current to the south with a speed of $1.4 \mathrm{~m} / \mathrm{s}$, what is his velocity as seen by someone on the shore?
6. A stationary dog owner is watching his dog run in a park. The dog is first seen 25 m north. The dog is later seen $12 \mathrm{~m} 25^{\circ}$ north of west. What is the displacement of the dog?
7. A plane is flying with a velocity of $190 \mathrm{~km} / \mathrm{h}$ east with respect to the air. An observer on the ground sees the plane moving at a velocity of $210 \mathrm{~km} / \mathrm{h} 10.0^{\circ}$ north of east. What is the velocity of the wind?
8. Alex and Ryan are on opposite sides of a river. If Alex must swim directly east to reach his friend, what direction should he aim if he can swim at a speed of $2.5 \mathrm{~m} / \mathrm{s}$ in still water and the current is $1.2 \mathrm{~m} / \mathrm{s}$ to the north?

An object launches into the air tends to follows a \qquad path. If you break down the velocity into x and y components you will discover that both sides are \qquad and therefore totally \qquad _.

Fun Fact: if an object is caught at the same height as it was
 launched. Its landing (Vf) speed must equal to it launching speed (Vi) with opposite angle.

y-components

- Always a constant acceleration of \qquad due to earth's gravitational pull.
- Need to use the BIG 3 Equations

The only value that can ever be on both sides is \qquad because it is \qquad and has no

Ex 1: A student sits on the roof of their house which is 12 m high. She can launch water-balloons from a slingshot at $25 \mathrm{~m} / \mathrm{s}$. If she fires a water-balloon directly horizontally:
a. How long will it be airborne?
b. How far will it travel?

* How long it is airborne only depends on: \qquad
* How far it travels in the x-direction depends only on: \qquad and \qquad

Ex 2: A quarterback launches a ball to his wide receiver by throwing it at $22.0 \mathrm{~m} / \mathrm{s}$ at 35° above horizontal.
a. How far downfield is the receiver?
b. How high does the ball go?
c. At what other angle could the quarterback have thrown the ball and reached the same displacement?

Ex 3: A cannon sits on a 65 m high cliff (typical Trask...so typical...). A cannonball is fired at $42 \mathrm{~m} / \mathrm{s} 55^{\circ}$ above the horizontal.
a. How long is it airborne?
b. What is its final velocity?
c. What is its maximum height relative to the ground below?

1. An object is thrown horizontally at a velocity of $10.0 \mathrm{~m} / \mathrm{s}$ from the top of a 90.0 m building. Calculate the distance from the base of the building that the object will hit the ground.
2. An object is thrown horizontally at a velocity of $25.0 \mathrm{~m} / \mathrm{s}$ from the top of a $1.50 \times 10^{2} \mathrm{~m}$ building. Calculate the distance from the base of the building that the object will hit the ground.
3. An object is thrown horizontally at a velocity of $18.0 \mathrm{~m} / \mathrm{s}$ from the top of a cliff. If the object hit the ground 100.0 m from the base of the cliff, how high is the cliff?
4. An object is thrown horizontally at a velocity of $20.0 \mathrm{~m} / \mathrm{s}$ from the top of a cliff. If the object hit the ground 48.0 m from the base of the cliff, how high is the cliff?
5. An object is thrown horizontally from the top of a building at a velocity of $15.0 \mathrm{~m} / \mathrm{s}$. If the object takes 5.50 s to reach the ground, how high is the building?
6. An object is thrown horizontally from the top of a cliff at a velocity of $20.0 \mathrm{~m} / \mathrm{s}$. If the object takes 4.20 s to reach the ground, how far from the base of the cliff did the object hit the ground?
7. An object is thrown horizontally from the top of an 85.0 m building. If the object hits the ground 67.8 m from the base of the building, what was the horizontal velocity of the object?
8. The dots below represent the position of a projectile every 0.10 s as it is projected horizontally to the right along an inclined air table. For this question, consider down and right as the positive directions.
a) Complete the table.
b) Using your horizontal velocity, draw a velocity-time graph.
c) Using your vertical velocity, draw a velocity-time graph.
d) Using your graphs, find
i) the horizontal acceleration.
ii) the vertical acceleration.

Time (s)	Displacement from $t=0$ (cm)		Displacement During Time Interval (cm)		Average Velocity During Time Interval (cm/s)	
	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical
0.00	0.00	0.00				
0.10	0.50	0.15				
0.20	1.00	0.30				
0.30	1.50	0.70				
0.40	2.00	1.10				
0.50	2.50	1.60				
0.60	3.00	2.20				
0.70	3.50	2.90				
0.80	4.00	3.70				
0.90	4.50	4.60				
1.00	5.00	5.60				
1.10	5.50	6.70				

Worksheet 7b) Projectile Motion (Launched at Angles)

1. A cannon ball is launched on a flat field at an angle of 30.0° above the horizontal and has an initial velocity of $120 \mathrm{~m} / \mathrm{s}$.
a) Draw a vector diagram showing the initial velocity vector and its horizontal and vertical components.
b) What is the time of flight?
c) What is the horizontal range?
2. A soccer ball is kicked from ground level. The ball stays in the air for 4.3 s and the ball hits the field 55 m away from where it was kicked.
a) What is the initial velocity of the ball?
b) What is the velocity upon impact?
c) What maximum height does the ball reach?
3. In a circus, a "human cannonball" is launched from a cannon and lands in a net. The cannon releases him at the same height as the net. His initial velocity is $18.3 \mathrm{~m} / \mathrm{s}$ in a direction 40.0° above the horizontal.
a) For how much time will he be in the air?
b) How far does he travel horizontally?
c) What is the velocity upon impact?
4. The circus manager from the previous question wants to make the stunt more dramatic by firing the stuntman through a hoop 9.0 m high then land in a safety net at the same height as the cannon. The cannon's angle is changed to 45.0° and the velocity is increased to $21.0 \mathrm{~m} / \mathrm{s}$. The manager needs to know where to place the hoop and safety net.
a) How far from the cannon should the safety net be placed?
b) What is the time required to reach the height of the hoop?
c) How far from the cannon should the hoop be placed?
d) Sketch the setup of the stunt showing the location of the cannon, hoop and net?
5. A catapult flings a rock from a castle wall of height 60.0 m . The initial velocity of the rock is $80.0 \mathrm{~m} / \mathrm{s}$ at an angle of 25° above the horizontal.
a) What is the horizontal range?
b) What is the velocity upon impact?
c) What maximum height above the ground does the ball reach?
d) If there is a 75 m high tree along the flight path 76 m from the wall, will the rock clear the tree? If so, by how much?
