Name \qquad
Date \qquad

Goal: Estimate and determine benchmarks for angle measure.

1. radian: The measure of the central angle of a circle subtended by an arc that is the same length as the radius of the circle.

Key Ideas:

- Angles can be measured using different units. These include degrees, radians, gradients and minutes and seconds.
- Any angle measures presented a real numbers without units are considered to be in radians.

Units of Measurement for Angles

- Degrees: devised in ancient Babylon; \qquad
- Gradients: devised in 18th century; \qquad
- Radians: devised by mathematicians and scientists; \qquad

$$
\begin{aligned}
& \theta=1 \text { radian } \approx 57.296^{\circ} \\
& 2 \pi \text { radians } \approx 6.28 \text { radians }=360^{\circ}
\end{aligned}
$$

Example 1: Relating degrees to radians in a circle.

Example 2: Calculate the value of each angle in radian measure, to the nearest tenth, and then sketch each angle.
a. 100°
b. 290°
c. 590°

Example 3: Calculate the value of each angle in degree measure, to the nearest degree, and then sketch each angle.
a. 5.7696
b. 0.7854
c. 14.8353

Example 4: For each pair of angle measures, determine which measure is greater.
a. 3π radians or 8 radians
b. 400° or 6.5 radians

$$
\begin{aligned}
& \oplus \\
& \oplus, \oplus \\
& \oplus \oplus \\
& \oplus, \theta \\
& \oplus \oplus \\
& \oplus \\
& \oplus
\end{aligned}
$$

10

Name \qquad
Date \qquad

Goal: Investigate the characteristics of the graphs of sine and cosine functions.

1. periodic function: A function whose graph repeats in regular intervals or cycles.
2. midline: The horizontal line halfway between the maximum and minimum values of a periodic function.

3. amplitude: The distance from the midline to either the maximum or minimum value of a periodic function; the amplitude is always expressed as a positive number.

4. period: The length of the interval of the domain to complete one cycle.

Example 1: Correctly label the midline, maximum and minimum points, amplitude and period for the graphs below. State which graph is a sine function and which graph is a cosine function.

HW: 8.2 pp. 524-525 \#1-6

Name \qquad
Date \qquad

Goal: Identify characteristics of the graphs of sinusoidal functions.

1. sinusoidal function: Any periodic function whose graph has the same shape as that of $y=\sin x$.

Key Ideas:

- Range =
- Amplitude =
- Equation of Midline =
- Period: \qquad

Example 1: The sine curve below shows a person's height above the ground as the person rides a Ferris wheel. Label the range, amplitude, midline and period.

Time (min.)

Example 2: The diagram below displays some of the key information about a particular Ferris wheel. One ride last 600 s and completes 10 rotations.

a. Complete the table below to show a rider's height above the ground.

Time on ride (s)	0	15	30	45	60	75	90
Height above the ground (m)							

b. Sketch a graph to represent the rider's height above the ground during the ride. Label the range, amplitude, midline and period.

c. How is this graph, and Ferris wheel, different from the graph and Ferris wheel in Example 1?

Example 3: The original Ferris wheel, designed by George Ferris in 1893, could carry 2160 people at a time. It had a maximum height of 80.4 m and a radius of 38 m .
a. Fill in the table below for the height above the ground of a person on the Ferris wheel. Assume that the person got on the ride at the wheel's lowest point and that one rotation took 16 min .

Time on ride (min)	0	4	8	12	16	20	24
Height above the ground (m)							

b. Sketch a graph to represent the rider's height above the ground during the ride. Label the range, amplitude, midline and period.

Name \qquad
Date

Goal: Identify characteristics of the equations of sinusoidal functions.

Investigating the characteristics of $\boldsymbol{y}=\boldsymbol{a} \sin \boldsymbol{b}(\boldsymbol{\theta}-\boldsymbol{c})+\boldsymbol{d}$

$$
y=\sin \theta
$$

Radians

Amplitude $=$
Period $=$

Degrees

Amplitude $=$
Period $=$

$$
y=2 \sin \theta \quad(a=\quad) \quad y=4 \sin \theta \quad(a=\quad)
$$

$y=\boldsymbol{a} \sin \theta \quad$ What does the value of " \boldsymbol{a} " do to the original $(y=\sin \theta)$ sine function?
$y=\sin 2 \theta \quad(b=\quad)$ $y=\sin 0.5 \theta \quad(b=\quad)$

$y=\sin \boldsymbol{b} \theta \quad$ What does the value of " \boldsymbol{b} " do to the original $(y=\sin \theta)$ sine function?

$$
y=\sin (\theta-\pi) \quad(c=\quad)
$$

$$
y=\sin \left(\theta+90^{\circ}\right) \quad(c=\quad)
$$

$y=\sin (\theta-\boldsymbol{c}) \quad$ What does the value of "c" do to the original $(y=\sin \theta)$ sine function?
$y=\sin \theta+2$
$(d=\quad)$

$$
y=\sin \theta-3
$$

$$
(d=\quad)
$$

$y=\sin \theta+\boldsymbol{d} \quad$ What does the value of "d" do to the original $(y=\sin \theta)$ sine function?

$$
y=a \sin b(\theta-c)+d
$$

$$
y=a \cos b(\theta-c)+d
$$

$$
y=\sin 2 \theta-3
$$

$$
y=3 \sin \left(\theta-45^{\circ}\right)+1
$$

HW: 8.4 pp. 558-561 1-4, 5-9,12, 13 \& 14

