

In 1665 Sir Isaac Newton formulated three laws that dictate the motion of objects. These three laws are universal and apply to all forces in the universe.

Newton's ${ }^{\text {st }}$ Law:
An object... in motion will stay in motion and an object... at rest will stay at rest unless... an outside Force is applied [Fret $=0$] ak: Law of Inertia

Newton's $2^{\text {nd }}$ Law: The acceleration of a body is proportional to the force ad inversely proportion to the mass.

As a formula:

Example:

Example:
LON
$\xrightarrow{\square} 100 \mathrm{~N}$
$F_{n t}=$ SON [E]
$a=\frac{F_{\text {un d }}}{\text { mass }}$
Newton's $3^{\text {rd }}$ Law:
For every... action force these is an equal and opposite
reaction force.

As a formula: $\quad F_{\text {action }}=-F_{\text {reaction. }}$

Free Body Diagrams: (Draw one for EVERY force question)

1) Represent the object... a box
2) Represent all forces... as arrows $\square \longrightarrow 10 \mathrm{~N}$

- arrows me vectors so dir. is critical
- Start in th center and dram outward.
- The size of arrow represent magnitude of force.

Examples: Draw FBDs for each situation

1. A textbook sits motionless on a table.

2. A dragster accelerates from rest. car a

3. A coconut falls from a tree (no air friction)

4. A car drives at a constant
velocity. $a=0 \Rightarrow$ Fut $=0$

5. A puck slides along frictionless ice. \xrightarrow{v}

6. A block of wood slides down an incline

$F B D \rightarrow F_{\text {ut }} \rightarrow a$
7. A student pulls straight upwards with a force of 650 N on their 15 kg backpack. What is the backpack's acceleration? depends on FBD always

8. A 1200 kg car accelerates at $5.85 \mathrm{~m} / \mathrm{s}^{2}$. If the force of friction acting on the car is 2800 N , how much force does the engine exert?

Trickery Alert!
Just when you though you were done with kinematics, they sneak back in. You will be expected to use kinematics to solve for acceleration to use in force problems and vice

Even More Trickery!

Remember that when determining the forces working on an object we need to consider their directions. If a force is working in the direction of acceleration we need to break it down into components.

Ex:

A 2.10 kg curling rock is hurled down ice at $6.5 \mathrm{~m} / \mathrm{s}$. It comes to a stop in 2.0 s . t
What is the force of friction between the ice and the rock?

$$
\begin{array}{ll}
V_{:=6.5} & V_{f}=V_{i}+a t \\
V_{f}=0 & 0=6.5+a[12] \\
t=12 & a=-0.542 \mathrm{~m} / \mathrm{s}^{2} \\
a=? & \\
F_{m} t=F_{f}=\operatorname{ma}
\end{array}
$$

$$
F_{f}=(2.1 \mathrm{~kg})(-0.542)
$$

$$
F_{f}=-1.1 \mathrm{~N}
$$

NOTE:

How: wsw \#1 Q1-9

$\frac{\text { Dynamics Notes }}{2 \text { - Friction }}$

Friction is created whenever... the surface of one object is in contact with another On the microscopic level...

There are 2 types of friction:
Static Friction: Amount of F_{f} to overcome when the object starts from rest $\left(V_{i}=0\right)$
Kinetic Friction: Ff to overcome it the object is already in motion.

Ex 1:
A 3.75 kg block is pushed along a tabletop with a force of 45.0 N . The coefficient of friction is 0.65 .
a) Find the force of friction.
b) Find its acceleration. $\rightarrow F_{\text {not }}=m a$

$$
\begin{array}{ll}
F_{N}= & F_{N}=F_{g}=36.75 \mathrm{~N} \\
F_{g}=(3.75) \mathrm{g} & F_{0}=45 \mathrm{~N} \\
F_{f}=\mu F_{N}=0.65\left[^{\circ}\right]=23.9 \mathrm{~N} & \left.F_{n}\right) \\
F_{g}=36.75 \mathrm{~N} & F_{f}=m a \\
& 45 \mathrm{~N}=23.9 \mathrm{~N}=3.75(a) \\
& \vec{a}=5.63 \mathrm{~m} / \mathrm{s}^{2}[\text { rig } \mathrm{lt}]
\end{array}
$$

Note that the irregularities in a static object will tend to "dig in" more and generally:

Friction $_{\text {static }}>$ Friction $_{\text {kinetic }}$

$$
\text { Friction }_{\text {static }}>\text { Friction }_{\text {kinetic }}
$$

Ex 2:
A 0.200 kg puck is pushed along a sheet of ice with a force of 0.240 N . If it moves at a constant velocity, find the coefficient of friction

$F_{N}=F_{g}=1.96 \mathrm{~N}$
x $F_{\text {not }}=0 \Rightarrow F_{f}=F_{a}=0.24 \mathrm{~N}$

$$
F_{f}=\mu F_{N} \mu=\frac{F_{f}}{F_{N}}
$$

Ex 3:
A 1.12 kg textbook is pushed horizontally against a wall with a coefficient of friction of 0.465 . What is the least amount of force required to keep the book from slipping?

$$
\begin{aligned}
& F_{g}=m g=(1.12 \mathrm{~kg}) g=10.98 \mathrm{~N} \quad F_{f}=F_{g}=10.98 \mathrm{~N} \\
& \mu=0.465 \\
& F_{f}=\mu F_{N} \quad F_{N}=\frac{F_{f}}{\mu}=\frac{10.98 \mathrm{~N}}{0.465}=23.6 \mathrm{~N} \\
& x: F_{a}=F_{N}=23.6 \mathrm{~N} \quad F_{f}=\mu F_{N}=280 \mathrm{~N} \\
& \mathrm{~min}^{100 \mathrm{~N}} \underset{F_{a}}{\leftrightarrows}=100 \mathrm{~N}
\end{aligned}
$$

Dynamics Notes

3 - Forces in 2-D
As with any vectors, forces must be resolved with consideration to both their magnitude and direction. Ex
Two students push a crate across a frictionless surface. Student A pushes with 75 N East and Student B pushes with 48 N South.
What is the resultant force acting on the box?

$F_{T_{0}+土}=\sqrt{75^{2}+48^{2}}$

$F_{\text {rotl }}=89 \mathrm{~N} / /$
$\theta=\tan ^{-1}\left(\frac{48}{75}\right)=32.6^{\circ}[S$ of $E]$
If there are more than two forces then it is best to solve for the resultant using the...

Ex 2 - Determine the resultant force if all three forces in the last example are applied to a single body.

Ex 3: Two children pull a third child on a toboggan (shown from the top, assume up is north).
Assuming that they pull on ropes that are parallel to the ground determine the magnitude of the force exerted on the toboggan.

HW: Wsw\# 2.2 Q1-4

A ball sitting on a level surface will not roll because the forces on it are balanced $\left(\mathrm{F}_{\text {net }}=0\right)$.

Although the F_{g} pulls straight down at all times...
F_{N} does not push strigil up p!

However, when the ball is placed on an inclined plane it will roll down the plane.

For inclined plane questions our first step should always be to resolve the object's F_{g} into two components:

Two important things to notice:

1) Only the parallel component of $F_{y} \Rightarrow F_{g \prime \prime}$ pulls down the ramp.
2) The perpendicular compounds $\mathrm{Fg} \perp$ is equal and opposite to \qquad TN

Ex
An 8.0 kg block slides down the frictionless inclined plane shown. What is its acceleration?
$F g=m g$
$F_{g}=8(9.5)$
$\mathrm{Fg}=78.4 \mathrm{~N}$

$$
\begin{aligned}
& F_{\text {net }}=F_{g \prime \prime}=F_{g} \sin \left(35^{\circ}\right) \\
& m a=78.4 \mathrm{~N}(\sin 35) \\
& 8 a=44.97 \\
& a=5.6 \mathrm{~m} / \mathrm{s}^{2} \text { down the slope }
\end{aligned}
$$

Ex an 11 kg block up the frictionless ramp shown at a constant velocity?

$$
F_{a}=m g \operatorname{lkg}\left(58^{\circ}\right)
$$

$$
F_{a}=91 \mathrm{~N}
$$

Does the mono actually matter is
No! Not for acceleration!!

Ex $F_{1} \rightarrow F_{N} \rightarrow F_{f}$
A 15 kg block sits on an inclined ramp whose coefficient of friction is 0.21 . Find the block's acceleration. 15 ki

5 kg

$$
\begin{aligned}
& m a=70.84 \mathrm{~N} \\
& a=4.7 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Mass doesn't matter for "accel" Quiz next time!!

Dynamics Notes

5 - Two Objects and Tension

There are a number of common force problems that involve 2 objects, that you will be expected to be able to solve. We will focus on 3 of these.

1) Atwood's Machine: Two masses suspended by a pulley

Diagram: Include all forces at work on the two masses.

Both masses have a F_{g} that pull downwards, but since they are connected by a pulley those forces work in
opposition to each other.
The masses will accelerate so that the... langer mass wins
Since they are attached by a rope the acceleration of the masses must be

The Strategies:

Note that there is a force of $\operatorname{TENSION}(\mathrm{T})$ that exists along the rope. Tension acts the same as all other forces, with two important peculiarities:

1) It is an internal force, acting... in opposite direction at any point along the rope.
2) It cancels out...
in

Equation.

- When solving these problems it is easiest for us to choose the direction... of the heavier mass (Win)
as positive
- Remember that the acceleration on the two masses...
must be equal.
- It can also be easier to conceptualize this problem if we "unfold" the masses and lay them out in a line, while keeping all of our forces as they are ...I know that sounds weird so, here's an example.

Ex
Two masses are suspended from a lightweight rope over a frictionless pulley as shown. What will their acceleration be once released?
$F_{\text {Let }}^{\text {sys }}=F_{g_{1}}-T+T-F_{g_{2}}$
$M_{\text {to td }} a=(8 k g) g-(5 k j) g$
$\left(8+5 \mathrm{k}_{\mathrm{g}}\right) a=29.4 \mathrm{~N}$
$a=2.26 \mathrm{~m} / \mathrm{s}^{2}$ down for 8 量

Alright that wasn't too hard, but can you find the tension in the rope?
If we use the same force diagrams and equations as before we hit a snag. The two tension forces \qquad
\qquad !!!

This is because tension is an internal force
In order to solve for tension we have to consider... one mass only

Strategy: To solve for tension chop your diagram in half and only consider one of the masses. Either one is fine because...

both tensims are EQUAL!!

Ex - Find the tension in the rope in the preceding example.

```
Win - Lose
\({ }^{T} T\) Win \(^{2} \quad F_{n t}=T-F_{g_{2}}\)
\(m a=T-m g\)
\((5 k)\left(2.26 m \mu_{1}^{2}\right)=T-(5)\left(9.8 m_{1}\right)\)
\(T=60.3 \mathrm{~N}\)
```

Note: When finding the tension we are only considering half of the equation therefore we only use mass af f. one box
2) Multiple Horizontal Masses: Attached by a cord $F_{f_{2}}=\mu m_{2} g=0.25(6 \mathrm{~kg})(g)=14.7$

Ex $\quad F_{f_{1}}=\mu F_{N_{1}}=\mu m_{1} g=0.25(8 \mathrm{~kg})(g)=19.6 \mathrm{~N}$
Consider the masses shown. If $\mu=0.25$ for both blocks, find:
a. the acceleration of the entire system
b. the tension T in the rope between the blocks.

Sos: $F_{n t}=\overrightarrow{F_{a}}-\stackrel{\leftarrow}{F_{p_{1}}}-{\stackrel{F}{f_{2}}}^{*}$
$M_{T} a=75 \mathrm{~N}-19.6 \mathrm{~N}-14.7 \mathrm{~N}$
$(14 \mathrm{~kg}) a=40.7 \mathrm{~N}$
$a=2.91 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{R}]$
$\stackrel{\text { b) }}{\leftarrow} \leftrightarrows$ T
F_{f}
$F_{\text {ret }}=T-F_{f}$
$m a=T-19.6 \mathrm{~N}$
$(8)(2.91)=T-19.6 \mathrm{~N}$

3) The Hanging Mass: One mass hanging, one horizontal

b) $\begin{aligned} & \uparrow(T b) \\ & \frac{16}{\tau_{F g}} \quad F_{w t}=T b-F_{g} \quad T_{b}=F_{w} t+F_{g}=m a+m g=62.4 \mathrm{~N}\end{aligned}$

Dynamic Notes

6 - Two Objects and Inclines
Because one tricky concept is never enough, I give you..

Ex (Easy)
Two forces are attached by a rope over a frictionless pulley as shown.
(Assume the incline is frictionless) Determine:
a. The acceleration of the masses.
b. The tension in the rope.
$W_{i n}$ - Lose
$F_{\text {mossy }}=F_{g_{1}}-F_{g_{2}} 11$
$M_{T} a=39.2 \mathrm{~N}-29.4 \mathrm{~N}$
$(10 \mathrm{~kg}) a=9.8 \mathrm{~N}$
$a=0.98 \mathrm{~m} / \mathrm{s}^{2}$
down fir box 1
$(10 \mathrm{~kg}) a=9.8 \mathrm{~N}$
$a=0.98 \mathrm{~m} / \mathrm{s}^{2}$
down for box 1

Problem: What direction will they

 accelerate?In earlier pulley problems it was obvious, the bigger mass always wins. When an inclined plane is involved this is not always the case because for the mass on an incline only...

So determine the forces on each one separately and see which one is the winner.
Force $\left.1=\frac{F_{g_{1}}}{4} \right\rvert\,$ Force $2=F_{g_{2}} / 1$
$F_{g 1}=m_{1}^{\prime \prime} g$
$F_{g_{1}}=39.2 \mathrm{~N}$
Win

$$
F g_{211}=F g_{2} \sin \left(30^{\circ}\right)
$$

$$
=m_{2} g \sin \left(30^{\circ}\right)
$$

$$
=(6)(9.8) \sin \left(30^{\circ}\right)
$$

$=29.4 \mathrm{~N}$

Ex
In the name of physics, a monkey is attached to a sleeping sheep on a ramp. Don't ask why.

As we all know, the coefficient of friction for a sleeping sheep on a ramp is precisely 0.15 . Determine:
a. The acceleration of the system.
b. The tension in the rope.

$$
\begin{aligned}
& \mathrm{n} \text { for a sleeping sheep } \\
& \text { Winner } \quad F_{g_{1}}=m \cdot \mathrm{~m} \cdot \mathrm{~g}=235.2 \mathrm{~N}
\end{aligned}
$$

$F_{g_{21}}={ }_{2}^{28} m_{2} g \sin \left(40^{\circ}\right)=176.38 \mathrm{~N}$
Fp point down the slope !!

$$
F_{f}=\mu F_{N}=\mu \quad F_{g_{2}} \perp=0.15[210.2 \mathrm{~N}]
$$

$$
F_{g 21}=2_{2}^{28} g \cos \left(40^{\circ}\right)=210.2 \mathrm{~N}
$$

ATytegies:

1. Find the forces acting on the two bodies separately to determine a
2. winner
3. Determine the friction on the sheep. Friction can work either up or down the ramp, because it always opposes motion, so we don't know which direction it is acting until we know the winner.
4. Based on the winner find the acceleration using $\mathrm{m}_{\text {total }}$
5. Choose either body and examine it separately to determine the tension in the rope

Down for Monkey

Q
 wiz $\# 2$
 Dy min by $5 / 6$
 cut der

With or wo friction
Finish WS 2.4 ad Extra WS (all Q_{s} are fair) Dy maris Toot: Mandy Now $14^{\text {th }}$

