ENERGY & MOMENTUM PROVINCIAL EXAMINATION ASSIGNMENT

ANSWER KEY / SCORING GUIDE

PART A: Multiple Choice (each question worth ONE mark)

Q	K	Q	K
1.	В	16.	В
2.	D	17.	С
3.	В	18.	В
4.	В	19.	С
5.	А	20.	D
6.	D	21.	D
7.	С	22.	В
8.	С	23.	С
9.	С	24.	D
10.	С	25.	С
11.	А	26.	С
12.	С	27.	С
13.	А	28.	А
14.	В	29.	С
15.	А	30.	С

1. A daredevil is attached by his ankles to a bungee cord and drops from the top of a bridge. The force exerted on the daredevil by the bungee cord is measured against the change in length, x, of the cord as the cord is stretched, slowing the daredevil's fall.

]	Force (N)	0	300	600	1 000	1 200	1 700	1 900
	<i>x</i> (m)	0	5	10	15	20	25	30

a) Plot a graph of force vs. change in length on the graph below. (2 marks)

Area =
$$\frac{1\,900 \cdot 30}{2}$$
 = 28 500 J
= 2.9×10⁴ J \leftarrow 3 marks

$$p_{i} = p_{f}$$

$$mv_{i} = (2 m)v_{f}$$

$$v_{f} = \frac{v_{i}}{2}$$

$$= 1.5 \text{ m/s}$$

$$\Delta E_{P} = -\Delta E_{k}$$

$$(2 m)gh_{\max} = \frac{1}{2}(2 m)(v_{f})^{2}$$

$$h_{\max} = \frac{(v_{f})^{2}}{2 g}$$

$$= 0.11 \text{ m}$$

$$\leftarrow 3\frac{1}{2} \text{ marks}$$

 $E_k = \frac{1}{2}mv^2 \quad \leftarrow \mathbf{1} \text{ mark}$ $= \frac{1}{2}(240 \text{ kg})(2.2 \text{ m/s})^2$ $= 580 \text{ J} \quad \leftarrow \mathbf{1} \text{ mark}$

c) What was the efficiency of this process?

$$Efficiency = \frac{E_{out}}{E_{in}} \leftarrow 1 \text{ mark}$$
$$= \frac{580 \text{ J}}{1 \text{ 380 J}}$$

$$= 0.42 \text{ or } 42\% \leftarrow 1 \text{ mark}$$

(2 marks)

4. A student plots the graph below, showing the kinetic energy E_k of a motorbike versus the square of its velocity v^2 .

a) What is the slope of this graph?

(2 marks)

(2 marks)

From the graph: $E_k = kv^2$, $\therefore (E_k = 50 v^2) \leftarrow 1$ mark But $E_k = \frac{1}{2}mv^2$, therefore the slope represents one half the mass of the motorbike. $\leftarrow 1$ mark

b)	What is the average force of friction acting on the cart?	(2 marks)
----	---	-----------

 E_h = work done by friction

 $11560 = F_f \cdot d$

 $\therefore F_f = \frac{11\,560}{60.0}$ $F_f = 193 \text{ N}$ $F_f = 190 \text{ N} \quad \leftarrow 2 \text{ marks}$

6. A 0.50 kg ball starting from position A which is 7.5 m above the ground, is projected down an incline as shown. Friction produces 10.7 J of heat energy.

The ball leaves the incline at position B travelling straight upward and reaches a height of 13.0 m above the floor before falling back down.

 $E_{TA} = E_{Total}$

← 2 marks

$$E_{K_{A}} + E_{P_{A}} = E_{P_{top}} + E_{h}$$

$$\frac{1}{2}mv^{2} + mgh_{A} = mgh + E_{h} \quad \leftarrow 2 \text{ marks}$$

$$\frac{1}{2} \times 0.50(v^{2}) + 0.50 \times 9.8 \times 7.5 = 0.50 \times 9.8 \times 13 \times +10.7 \quad \leftarrow 1 \text{ mark}$$

$$v^{2} = \frac{74.4 - 36.75}{0.25} \quad \leftarrow 1 \text{ mark}$$

$$v = 12 \text{ m/s} \quad \leftarrow 1 \text{ mark}$$

7. Sally is driving south in her 2 500 kg pickup truck at 3.8 m/s when she collides with Willy driving west in his 1 200 kg car at 4.5 m/s.

The two vehicles lock together and slide over the wet parking lot. Find the speed and direction of the damaged vehicles immediately after the collision. (7 marks)

Method 1:

Cosine Law:

$$p_2^2 = (p'_T)^2 + p_1^2 - 2 p'_T p_1 \cos 30^\circ$$

= 12.7² + 7.6² - 2 × 12.7 × 7.6 × cos 30°
$$p_2^2 = 51.9$$

$$p_2 = \sqrt{51.9} = 7.20 \text{ kg m/s}$$

$$v_2 = \frac{p_2}{m_2} = \frac{7.20 \text{ kg m/s}}{1.3 \text{ kg}} = 5.5 \text{ m/s}$$

 \leftarrow 3 marks

 $\leftarrow 1 \text{ mark}$

Sine Law:

$$\frac{\sin \theta}{7.6} = \frac{\sin 30^{\circ}}{7.2}$$

$$\sin \theta = \frac{7.6 \times \sin 30^{\circ}}{7.2}$$

$$\sin \theta = 0.528$$

$$\theta = 32^{\circ}$$

$$v_2 = 5.5 \text{ m/s at } 32^{\circ}$$

<u>Method 2:</u> (one variation)

$m_1 v_1 \cos 30^\circ + m_2 v_2 \cos \theta = m_T v'$	$\leftarrow 1 \text{ mark}$
$4.2(1.8)\cos 30^\circ + 1.3(v_2)\cos \theta = (4.2+1.3)(2.3)$	$\leftarrow 1 \text{ mark}$
$v_2 = \frac{4.69}{\cos \theta}$	$\leftarrow 1 \text{ mark}$
$m_1 v_1 \sin 30^\circ + m_2 v_2 \sin \theta = 0$	$\leftarrow 1 \text{ mark}$
$4.2(1.8)\sin 30^\circ + 1.3(v_2)\sin \theta = 0$	$\leftarrow 1 \text{ mark}$
$v_2 = \frac{2.91}{\sin \theta}$	
$\frac{4.69}{\cos\theta} = \frac{2.91}{\sin\theta}$	
$\frac{\sin\theta}{\cos\theta} = \frac{2.91}{4.69}$	$ ightarrow \leftarrow 1$ mark
$\tan\theta = 0.618$	
$\theta = 32^{\circ}$	
$v_2 = \frac{4.69}{\cos 31.8}$	ightarrow ightarrow 1 mark
$v_2 = 5.5 \text{ m/s}$	

$$= 3.8 \times 10^5$$
 kg m/s \leftarrow 2 marks

b) What was the magnitude of the impulse on the 1 200 kg part during the separation? (3 marks)

 $Impulse = \Delta p$ $= P_b - P_a \qquad \leftarrow 1 \text{ mark}$ $= (450 \times 280) - (450 \times 230) \qquad \leftarrow 1 \text{ mark}$ $= 2.3 \times 10^4 \text{ N} \cdot \text{s} \qquad \leftarrow 1 \text{ mark}$

c)	Using principles of physics, explain what changes occur, if any, to the	
	i) momentum of the system as a result of the explosion.	(2 marks)

In an explosion, momentum must be conserved.

ii) kinetic energy of the system as a result of the explosion.	(2 marks)
--	-----------

Since the explosion adds energy to the system, the system will gain kinetic energy.

A 5.20 kg block sliding at 9.40 m/s across a horizontal frictionless surface collides head on with a stationary 8.60 kg block. The 5.20 kg block rebounds at 1.80 m/s. How much kinetic energy is lost during this collision? (7 marks)

$$\begin{array}{l} m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2' \\ (5.20)(9.40) = (5.20)(-1.80) + (8.60) v_2' \\ \\ v_2' = 6.77 \ \text{m/s} \end{array} \right\} \quad \textbf{4 marks} \\$$

$$E_{k}(before) = \frac{1}{2}m_{1}v_{1}^{2} = 229.7 J$$

$$E_{k}(after) = \frac{1}{2}m_{1}v_{1}^{2'} + \frac{1}{2}m_{2}v_{2}^{2'}$$

$$= 8.424 + 197.2$$

$$= 205.6 J$$

$$LOST = 24.12 J$$

$$\Delta E = 24.1 J$$

3 marks

12. In sports such as golf, tennis and baseball, a player exerts a force over a time interval on a ball in order to give it a high speed, as shown on the graph.

Players are instructed to "follow through" on their swing. A weaker player may not exert as large a force but may give the ball a higher speed than a stronger player.

a) Sketch on the graph below how a weaker player can overcome the force handicap.

(1 mark)

b)	Explain how the player ca	n impart a greater impulse on a ball	(3 marks)
----	---------------------------	--------------------------------------	-----------

By exerting a smaller force for a longer time, the weaker player may be able to deliver a greater impulse to the ball.