GRAVITATION

PROVINCIAL EXAMINATION ASSIGNMENT

Answer Key / Scoring Guide

PART A: Multiple Choice (each question worth ONE mark)

Q	K	Q	K
1.	A	21.	D
2.	D	22.	A
3.	D	23.	B
4.	C	24.	C
5.	D	25.	A
6.	D	26.	A
7.	A	27.	B
8.	B	28.	C
9.	C	29.	C
10.	D	30.	A
11.	A	31.	C
12.	B	32.	B
13.	D	33.	D
14.	B	34.	D
15.	C	35.	B
16.	B	36.	D
17.	C	37.	B
18.	B	38.	D
19.	C	39.	B
20.	B	40.	A

1. A $4.2 \times 10^{3} \mathrm{~kg}$ spacecraft orbits a $5.6 \times 10^{26} \mathrm{~kg}$ planet. If it takes the spacecraft $8.9 \times 10^{4} \mathrm{~s}$ to complete one orbit, how far is it from the planet's centre?

$$
\begin{array}{rlrl}
F_{n e t} & =F_{G} & & \\
F_{C} & =F_{G} & & \leftarrow \mathbf{2} \text { marks } \\
\frac{m_{1} 4 \pi^{2} r}{T^{2}} & =\frac{G m_{1} m_{2}}{r^{2}} & & \leftarrow \mathbf{2} \text { marks } \\
r^{3} & =\frac{G m_{2} T^{2}}{4 \pi^{2}} & \leftarrow \mathbf{1} \text { mark } \\
& =\frac{\left(6.67 \times 10^{-11}\right)\left(5.6 \times 10^{26}\right)\left(8.9 \times 10^{4}\right)^{2}}{4 \pi^{2}} & \leftarrow \mathbf{1} \text { mark } \\
r & =2.0 \times 10^{8} \mathrm{~m} & & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

2. a) The space shuttle orbits the Earth in a circular path where the gravitational field strength is $8.68 \mathrm{~N} / \mathrm{kg}$. What is the shuttle's orbital radius?

$$
\begin{array}{rlrl}
F_{g} & =m g=\frac{G M m}{r^{2}} & \leftarrow \mathbf{2} \text { marks } \\
g & =\frac{G M}{r^{2}} & & \leftarrow \mathbf{1} \text { mark } \\
r & =\sqrt{\frac{G M}{g}} & & \\
& =\sqrt{\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}{8.68}} & \leftarrow \mathbf{1} \text { mark } \\
& =6.78 \times 10^{6} \mathrm{~m} & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

b) A space station that has 10 times the mass of the shuttle in a) orbits Earth at the same altitude. How does the orbital speed of the space station compare to that of the shuttle? (Check one response.)
\square The space station's speed is less than the shuttle's speed.
T The space station's speed is the same as the shuttle's speed.
\square The space station's speed is greater than the shuttle's speed.
c) Using principles of physics, explain your answer to b).

The force of gravity is the only force that provides the centripetal acceleration. Since both the gravitational force and the centripetal force are proportional to mass, the acceleration remains the same, therefore the speeds must be the same. $\left(\frac{v^{2}}{r}\right) \quad \leftarrow \mathbf{3}$ marks OR
Since $F_{g}=F_{c}, \frac{m_{1} v^{2}}{r}=\frac{G m_{1} m_{\text {earth }}}{r^{2}}$ when you solve for v, the mass of the orbiting body cancels out. Speed is independent of the size of the orbiting mass.
3. An 884 kg satellite in orbit around a planet has a gravitational potential energy of $-5.44 \times 10^{10} \mathrm{~J}$. The orbital radius of the satellite is $8.52 \times 10^{6} \mathrm{~m}$ and its speed is $7.84 \times 10^{3} \mathrm{~m} / \mathrm{s}$.
a) What is the mass of the planet?

$$
\begin{array}{rlrl}
E_{p} & =-\frac{G M m}{r} & \leftarrow \mathbf{1} \text { mark } \\
-5.44 \times 10^{10} & =-\frac{6.67 \times 10^{-11} \times M \times 884}{8.52 \times 10^{6}} & \leftarrow \mathbf{1} \frac{1}{2} \text { mark } \\
M & =7.86 \times 10^{24} \mathrm{~kg} & & \leftarrow \frac{1}{2} \text { mark }
\end{array}
$$

b) What is the kinetic energy of the satellite?

$$
\begin{array}{rlrl}
E_{k} & =\frac{1}{2} m v^{2} & \leftarrow \frac{1}{2} \text { mark } \\
& =\frac{1}{2}(884)\left(7.84 \times 10^{3}\right)^{2} & & \leftarrow \mathbf{1} \text { mark } \\
& =2.72 \times 10^{10} \mathrm{~J} & & \leftarrow \frac{1}{2} \text { mark }
\end{array}
$$

c) What is the total energy of the satellite?

$$
\begin{aligned}
E_{T} & =E_{k}+E_{p} & & \leftarrow \mathbf{1} \text { mark } \\
& =2.72 \times 10^{10}+\left(-5.44 \times 10^{10}\right) & & \leftarrow \frac{1}{2} \text { mark } \\
& =-2.72 \times 10^{10} \mathrm{~J} & & \leftarrow \frac{1}{2} \text { mark }
\end{aligned}
$$

4. A spacecraft of mass 470 kg rests on the surface of an asteroid of radius 1400 m and mass $2.0 \times 10^{12} \mathrm{~kg}$. How much energy must be expended so that the spacecraft may rise to a height of 2800 m above the surface of the asteroid?
(7 marks)

$$
\begin{array}{rlrl}
\Delta E & =E_{p}^{\prime}-E_{p} & & \leftarrow \mathbf{2} \text { marks } \\
& =\left(-G \frac{M m}{r^{\prime}}\right)-\left(-\frac{G M m}{r}\right) & \leftarrow \mathbf{2} \text { marks } \\
& =\left(-\frac{6.67 \times 10^{-11} \times 2.0 \times 10^{12} \times 470}{(1400+2800)}\right)-\left(-\frac{6.67 \times 10^{-11} \times 2.0 \times 10^{12} \times 470}{1400}\right) & \leftarrow \mathbf{2} \text { marks } \\
& =(-14.9)-(-44.8) & \\
& =29.9 \mathrm{~J} & & \\
& =30 \mathrm{~J} & \mathbf{1} \mathbf{~ m a r k}
\end{array}
$$

5. a) Mars has a mass of $6.37 \times 10^{23} \mathrm{~kg}$ and a radius of $3.43 \times 10^{6} \mathrm{~m}$. What is the gravitational field strength on its surface?

$$
\begin{array}{rlrl}
g & =\frac{G M}{r^{2}} & \leftarrow \mathbf{2} \text { marks } \\
& =\frac{6.67 \times 10^{-11}\left(6.37 \times 10^{23}\right)}{\left(3.43 \times 10^{6}\right)^{2}} & & \leftarrow \mathbf{1} \text { mark } \\
& =3.61 \mathrm{~N} / \mathrm{kg} & & \leftarrow \mathbf{1} \text { mark }
\end{array}
$$

b) What thrust force must the rocket engine of a Martian lander exert if the 87.5 kg spacecraft is to accelerate upwards at $1.20 \mathrm{~m} / \mathrm{s}^{2}$ as it leaves the surface of Mars?

$$
\begin{aligned}
F_{n e t}=m a & \leftarrow \mathbf{1} \text { mark } \\
F_{T}-F_{g}=m a & \\
F_{T}-m g=m a & \leftarrow \frac{1}{2} \text { mark } \\
F_{T}-87.5(3.61)=87.5(1.20) & \leftarrow \mathbf{1} \text { mark } \\
F_{T}=421 \mathrm{~N} & \leftarrow \frac{1}{2} \text { mark }
\end{aligned}
$$

6. A space shuttle is placed in a circular orbit at an altitude of $3.00 \times 10^{5} \mathrm{~m}$ above Earth's surface.

a) What is the shuttle's orbital speed?

$$
\begin{array}{rlrl}
F_{c} & =F_{g} & & \leftarrow \mathbf{1} \text { mark } \\
m \frac{v^{2}}{R} & =\frac{G M m}{R^{2}} & & \\
v^{2} & =\frac{G M}{R} & & \\
v & =\sqrt{\frac{G M}{R}} & \mathbf{2} \mathbf{~ m a} \\
& =\sqrt{\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}{6.68 \times 10^{6}}} & \leftarrow \mathbf{1} \mathbf{~ m a r k} \\
v & =7.73 \times 10^{3} \mathrm{~m} / \mathrm{s} & & \leftarrow \mathbf{1} \mathbf{~ m a r k}
\end{array}
$$

b) The space shuttle is then moved to a higher orbit in order to capture a satellite.

The shuttle's speed in this new higher orbit will have to be
\square greater than in the lower orbit.
\square less than in the lower orbit.
\square the same as in the lower orbit.
(Check one response.)
c) Using principles of physics, explain your answer to b).

As the space shuttle moves further away from the earth's centre the force of gravity acting on the shuttle decreases. Since the centripetal force is provided by the force of gravity, it must decrease as well. $\leftarrow \mathbf{2}$ marks

The smaller centripetal force generates a smaller centripetal acceleration $\leftarrow \mathbf{1}$ mark which in turn requires a smaller orbital velocity.
7. A 650 kg satellite in circular orbit around Earth has an orbital period of $1.5 \times 10^{4} \mathrm{~s}$.
a) What is the satellite's orbital radius?

$$
F_{G}=F_{C}
$$

$$
\begin{aligned}
\frac{G m M}{R^{2}} & =\not / \frac{4 \pi^{2}}{T^{2}} R & \leftarrow \mathbf{2} \text { marks } \\
R^{3} & =\frac{G M T^{2}}{4 \pi^{2}}=\frac{6.67 \times 10^{-11}\left(5.98 \times 10^{24}\right)\left(1.5 \times 10^{4}\right)^{2}}{4 \pi^{2}} & \\
R & =1.3 \times 10^{7} \mathrm{~m} & \leftarrow \mathbf{2} \text { marks }
\end{aligned}
$$

b) What is the gravitational potential energy of this satellite?

$$
\begin{aligned}
E_{p} & =-\frac{G m M}{R} & \leftarrow \mathbf{1} \text { mark } \\
& =\frac{-\left(6.67 \times 10^{-11}\right)(650)\left(5.98 \times 10^{24}\right)}{\left(1.3 \times 10^{7}\right)} &
\end{aligned}
$$

$$
E_{p}=-2.0 \times 10^{10} \mathrm{~J} \quad \leftarrow \mathbf{1} \text { mark }
$$

8. A 1200 kg space probe is in a circular orbit around the Sun. The orbital radius is $7.0 \times 10^{9} \mathrm{~m}$.
a) What is the orbital speed of this satellite?

$$
\begin{array}{rlrl}
F_{n e t} & =m a & & \leftarrow \mathbf{1} \mathbf{~ m a r k} \\
\frac{G m_{1} m_{2}}{r^{2}} & =\frac{m_{1} v^{2}}{r} & & \leftarrow \mathbf{2} \mathbf{~ m a r k s} \\
v^{2} & =\frac{G m}{r} & & \\
v^{2} & =\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(1.98 \times 10^{30} \mathrm{~kg}\right)}{7.0 \times 10^{9} \mathrm{~m}} & \leftarrow \mathbf{1} \mathbf{~ m a r k} \\
v & =1.37 \times 10^{5} \mathrm{~m} / \mathrm{s} & & \leftarrow \mathbf{1} \mathbf{~ m a r k}
\end{array}
$$

b) If the Sun collapsed to one-tenth its present radius without a change to its mass, the space probe's orbital radius will
\square increase.
\square decrease.
d stay the same.
(Check one response.)
(1 mark)
c) Using principles of physics, explain your answer to b).

Since the mass of the sun has not changed and the distance between the two objects has not changed, then the force of gravity is still the same. The force of gravity is the net force; therefore the centripetal force must be the same.
9. What minimum energy is required to take a stationary $3.5 \times 10^{3} \mathrm{~kg}$ satellite from the surface of the Earth and put it into a circular orbit with a radius of $6.88 \times 10^{6} \mathrm{~m}$ and an orbital speed of $7.61 \times 10^{3} \mathrm{~m} / \mathrm{s}$? (Ignore Earth's rotation.)

$$
\begin{array}{rlr}
E_{\text {orbit }} & =\frac{1}{2} E_{p} & \\
& =\frac{1}{2}\left(-\frac{G m M}{R}\right) & \\
& =\frac{1}{2}\left(-\frac{6.67 \times 10^{-11}\left(3.5 \times 10^{3}\right)\left(5.98 \times 10^{24}\right)}{6.88 \times 10^{6}}\right) & \\
& =-1.01 \times 10^{11} \mathrm{~J} & \\
E_{\text {surface }} & =-\frac{G m M}{R} & \\
& =-\frac{6.67 \times 10^{-11}\left(3.5 \times 10^{3}\right)\left(5.98 \times 10^{24}\right)}{6.38 \times 10^{6}} & \\
& =-2.19 \times 10^{11} \mathrm{~J} & \\
\Delta E & =E_{\text {orbit }}-E_{\text {surface }} & \\
& =\left(-1.01 \times 10^{11}\right)-\left(-2.19 \times 10^{11}\right) & \\
& =1.17 \times 10^{11} \mathrm{~J} & \\
& =1.2 \times 10^{11} \mathrm{~J} & \mathbf{1} \text { mark }
\end{array}
$$

10. A 720 kg communication satellite is in synchronous orbit around the planet Mars. This synchronous orbit matches the period of rotation so that the satellite appears to be stationary over a position on the equator of Mars. What is the orbital radius of this satellite?

Planetary Data for Mars

Mass: $\quad 6.42 \times 10^{23} \mathrm{~kg}$

Period of rotation: $\quad 8.86 \times 10^{4} \mathrm{~s}$

$$
\begin{array}{rlr}
F_{n e t}=m a_{c} & \\
F=\frac{G m M}{R^{2}} & \leftarrow \mathbf{1} \text { mark } \\
F_{g}=\frac{m 4 \pi^{2} R}{T^{2}} & \leftarrow \mathbf{1} \mathbf{~ m a r k} \\
\frac{G m M}{R^{2}}=\frac{m 4 \pi^{2} R}{T^{2}} & \leftarrow \mathbf{2} \text { marks } \\
R^{3}=\frac{G M T^{2}}{4 \pi^{2}} & \\
R^{3}=\frac{\left(6.67 \times 10^{-11}\right)\left(6.42 \times 10^{23}\right)\left(8.86 \times 10^{4}\right)^{2}}{4 \pi^{2}} & \leftarrow \mathbf{2} \text { marks } \\
R & =2.0 \times 10^{7} \mathrm{~m} &
\end{array}
$$

11. Geostationary satellites appear to remain stationary to an observer on Earth. Such satellites are placed in orbit far above the equator.

Using principles of physics, explain why such satellites all have the same orbital radius.

The period of such satellites must be $\mathbf{2 4}$ hours to remain stationary over one point. $\leftarrow \mathbf{1}$ mark The centripetal force is a gravitational force. $\leftarrow \mathbf{2}$ marks
For a period of $\mathbf{2 4}$ hours there is one orbital radius. $\leftarrow \mathbf{1}$ mark

