	sics 11 Wave and Sound Assignment N	Name
		Mark:
1.	Label this transvers wave.	1) \qquad 2) \qquad 3) \qquad 4) \qquad
2.	A wave hits the beach every 5.0 seconds, and the waves seem to be about 15 m apart. a) What is the speed of these wave b) what is the frequency of the waves?	v. \qquad f
3.	A hummingbird beats its wings 200 times every second. What is the period? What	frequency? T \qquad f \qquad
4.	Two slinkies are tied together. A wave in the first slinky travels with a velocity $4.0 \mathrm{~m} / \mathrm{s}$ m . After transmission the velocity in the second slinky is $7.0 \mathrm{~m} / \mathrm{s}$. Determine the wave slinky.	and wavelength of 1.5 ength in the second λ \qquad
5.	Determine the speed of sound in $30^{\circ} \mathrm{C}$ air and if it has a frequency of 251 Hz . Deter	e the wavelength (λ). of sound \qquad λ \qquad
6.	Underwater, the wavelength of sound increases to 5.90 meters. Use the information fron velocity of sound under water.	Q5 to determine the
7.	The two pulses below are approaching each other a 1 square per second. Draw their supe After 2 seconds After 4 seconds	osition after..... After 6 seconds
8.	a) Movement of a particle on a transverse wave is \qquad to the direction of the wave. b) This quality remains constant when a wave travels to a new medium.	a) \qquad b) \qquad

c) Frequency is the number of \qquad per second
d) When a positive pulse collide with a negative pulse, they form \qquad interference
e) Sound is a type of this mechanical wave (Transverse or Longitudinal?)
f) A wave travels from a rope to a light string, its reflection is \qquad
c)
d)
e) \qquad
f) \qquad
g) \qquad
9. A standing wave is created by a 12-meter rope (hint: 2 fixed end), the speed of the wave is measured to be $36 \mathrm{~m} / \mathrm{s}$
a) draw the standing wave patterns for the $1^{\text {st }}$ and $3^{\text {rd }}$ harmonic in the space below
b) Calculate the wavelengths of both of the waves in (a)
c) Determine the frequencies of both waves
$\lambda 1)$ \qquad
$\lambda 2)$ \qquad
f1) \qquad
f2) \qquad
10. a) label the nodes and antinodes on the diagram:
b) What is its wavelength if the distance between nodes is 2 m ?
c) If the person is shaking her hand up-and-down 12 times per second, what is the wave velocity?

λ \qquad
Speed \qquad
11. Two tuning forks are sounded together. One tuning fork has a frequency of 256 Hz . An observer hears 15 beats in 5 seconds. What are the possible frequencies of the other tuning fork?
f \qquad
12. Sketch the wave patterns associated with the 2 nd harmonic of a flute (open-open) that is 52 cm cm long. What frequencies would these waves have if the flute was played at $17.0^{\circ} \mathrm{C}$?
f
13. While standing near a railroad crossing, a person hears a distant train horn. According to the train's engineer, the frequency emitted by the horn is 440 Hz . The train is traveling at $20.0 \mathrm{~m} / \mathrm{s}$ and the speed of sound is $346 \mathrm{~m} / \mathrm{s}$.
a) What would be the frequency of the train's horn if the train were at rest?
b) What is the adjusted frequency that reaches the bystander as the train approaches the crossing?
c) What is the adjusted frequency that reaches the bystander once the train has passed the crossing?

