Waves
Waves are a \qquad that transfers \qquad from one point to another.

Basis on their ability or inability to transmit \qquad through a \qquad (i.e., empty space), we can categorize waves in two main groups

Electromagnetic Waves	
- Capable of transmitting its energy through a Ex.	- require a \quad Mechanical Waves from one location to another
	Ex.

Mechanical waves can occur in two distinct types: \qquad and \qquad .

These are defined based on how the medium \qquad (moves in a repetitive motion) relative to the motion of the wave itself.

Transverse wave is what we normally think of when we imagine a wave. Here, the particles move
\qquad to the direction that the wave travels in. A wave moving along a rope or string is a good example of a transverse wave.

1 - The direction of wave motion (energy travel) and particle motion (oscillation) of a transverse wave.

Longitudinal wave (or pressure wave or compression wave) is harder to visualize, but it is also perhaps more common in regular, everyday application: \qquad are longitudinal waves. In this type of wave, the \qquad move in the \qquad as the motion of the wave.

2 - The direction of wave motion (energy travel) and particle
motion (oscillation) in a longitudinal wave.

There are other types of mechanical waves, too. For example, water waves are actually a \qquad of transverse and longitudinal waves: water particles on the surface of a lake actually move in a
\qquad which has both up/down (transverse) and forward/backward (longitudinal)
components of motion.
ANIMATION URL: http://www.acs.psu.edu/drussell/demos/waves/wavemotion.html
Generally speaking, there are two ways that we can produce a wave.
Pulse
A pulse is generated by rapidly \qquad (transverse) or \qquad (longitudinal) the medium and then returning it to normal. The result is a single wave chunk that moves along the medium, which we will draw in below:

(i): Initial pulse generated at one end.

\qquad

Periodic Wave A periodic wave is generated by repeatedly applying the same pulse

(i): Initial pulse generated at one end.

(ii) and (iii): Repeated pulses travel along medium.

Lets Draw a wave

Frequency (f):

Ex, 8 waves pass in 2 seconds

Period (T):

Ex, the wave in last example would have a period of \qquad
Frequency and period are reciprocals, that is:

Medium:

Crest:

Trough:

Amplitude (A):
Waves with higher \qquad have \qquad Energy

Wavelength (λ) :

Waves with \qquad have \qquad Energy

Ex: Playing middle C on a piano produces a sound with a frequency of 256 Hz . What is the period of the sound wave?

Wave Transmission

In general, the speed of any wave through a medium is \qquad regardless of the \qquad of the wave. For example, a sound wave always travels at \qquad in air at sea level and room temperature regardless of its pitch (\qquad) or volume (\qquad). In steel, a longitudinal wave always travels at \qquad while a
transverse wave always travels at \qquad .

Changes to the composition of a material can change the speed of wave transmission. Here is a general rule:

- All other things being equal, higher \qquad means faster wave travel. Logically, because they are more rigid, the particles are more tightly bound together, so movement by one particle has a significant effect on adjacent particles.

Remember that speed is

IF we look at a single wave then:
(1)
(2)

This gives us the Universal Wave Equation:

Ex: An air horn sounds at a frequency of 220 Hz . If the speed of sound in air is $330 \mathrm{~m} / \mathrm{s}$ what is the wavelength of the sound wave?

Ex: The distance between successive crests in a series of water waves is 4.0 m , and the crests travel 8.6 m in 5.0 s . Calculate the frequency of a block of wood bobbing up and down on these water waves.

Wave Worksheet 1-2

1. Suppose that a longitudinal wave moves along a Slinky at a speed of $5 \mathrm{~m} / \mathrm{s}$. Does one coil of the Slinky move through a distance of 5 m in one second? Justify your answer.
2. Give one example of a transverse wave and another of a longitudinal wave, being careful to note the relative directions of the disturbance and wave propagation in each.
3. What is the difference between propagation speed and the frequency of a wave? Does one or both affect wavelength? If so, how?
4. What is the period of 60.0 Hz electrical power? $\mathbf{1 6 . 7} \mathbf{~ m s}$
5. If your heart rate is 150 beats per minute during strenuous exercise, what is the time per beat in units of seconds? $\mathbf{0 . 4 0 0} \mathbf{~ s} / \mathbf{b e a t}$
6. Find the frequency of a tuning fork that takes $2.50 \times 10-3$ s to complete one oscillation. $\mathbf{4 0 0} \mathbf{~ H z}$
7. A stroboscope is set to flash every $8.00 \times 10-5 \mathrm{~s}$. What is the frequency of the flashes? $\mathbf{1 2 5 0 0} \mathbf{~ H z}$
8. Storms in the South Pacific can create waves that travel all the way to the California coast, which are $12,000 \mathrm{~km}$ away. How long in days does it take them if they travel at $15.0 \mathrm{~m} / \mathrm{s}$? 9.26 d
9. Waves on a swimming pool propagate at $0.750 \mathrm{~m} / \mathrm{s}$. You splash the water at one end of the pool and observe the wave go to the opposite end, reflect, and return in 30.0 s . How far away is the other end of the pool? 11.3 m
10. Wind gusts create ripples on the ocean that have a wavelength of 5.00 cm and propagate at $2.00 \mathrm{~m} / \mathrm{s}$. What is their frequency? 40.0 Hz
11. How many times a minute does a boat bob up and down on ocean waves that have a wavelength of 40.0 m and a propagation speed of $5.00 \mathrm{~m} / \mathrm{s}$? 7.50 times
12. What is the wavelength of an earthquake that shakes you with a frequency of 10.0 Hz and gets to another city 84.0 km away in 12.0 s ? 700 m
13. Radio waves transmitted through space at $3.00 \times 108 \mathrm{~m} / \mathrm{s}$ by the Voyager spacecraft have a wavelength of 0.120 m . What is their frequency? $2.50 \times \mathbf{1 0 9 ~ H z}$
14. A person lying on an air mattress in the ocean rises and falls through one complete cycle every five seconds. The crests of the wave causing the motion are 20.0 m apart. Determine (a) the frequency and (b) the speed of the wave. $\mathbf{0 . 2 0 0} \mathbf{~ H z}, \mathbf{4 . 0 0} \mathbf{~ m} / \mathbf{s}$

Unit 4 Waves and Optics Day 3
 Wave Interference

http://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_en.html

Boundary Interactions

Waves can travel from one medium to another. The interface between the two media is called a \qquad . Part of the energy of the wave will \qquad through and continue on as a new wave in the medium (transmitted wave), while some of the energy of the wave will \qquad and continue on in the old medium (reflected wave). The amount of transmission/reflection depends on the respective \qquad of the two media.

Fixed End Reflection

A wave pulse reaching the end of a medium becomes
\qquad whenever it

- reflects off a \qquad
- moves from a \qquad medium into a
\qquad medium

Fixed End Reflection

A wave traveling from a less dense to a more dense medium...

...will be reflected off the boundary and transmitted across the boundary into the new medium. The reflected pulse is inverted.
http://www.aplusphysics.com/courses/regents/waves/regents_wave_interference.html

Free End Reflection

A wave pulse reaching the end of a medium remains
\qquad whenever it

- reflects off a \qquad
- moves from a _____ medium into
\qquad medium

Free End Reflection

A wave traveling from a more dense to a less dense medium...

More Dense

...will be reflected off the boundary and transmitted across the boundary into the new medium. There is no inversion.

Example - A wave pulse is sent along a string. The string is attached to a thick rope that is attached to a wall. What happens when the wave reaches the string/rope boundary? Is the reflected wave erect or inverted?

Note: For most boundary interactions:

	Wavelength	Frequency	Speed	Amplitude
Incident Wave				
Reflected Wave				
Transmitted Wave				

Example: A wave travelling along a rope has a speed of $10.0 \mathrm{~m} / \mathrm{s}$ and a wavelength of 5.00 m . The rope is connected to a light string at the end, and the transmitted wave has a speed of $20.0 \mathrm{~m} / \mathrm{s}$. What is the wavelength of the new wave? [13.3 m]

Wave Superposition

When two waves travel in the same medium they affect the medium independently. To determine their overall effect we use the principle of superposition.

Principle of Superposition:

The total amplitude of the waves is equal to...

Two waves with the _______ frequency and phase.

Constructive Interference:

Two waves with the same frequency and \qquad phase.

Destructive Interference:

Example - Pulse A is traveling towards pulse B. Pulse A has an amplitude of +2 . Pulse B has an amplitude of -3 . Draw a diagram of this interaction. What will the amplitude of the resultant wave be? What type of interference is this?

1) A wave travelling along a spring has a speed of $12.0 \mathrm{~m} / \mathrm{s}$ and a wavelength of 8.00 m . After transmission, the wave has a speed of $20.0 \mathrm{~m} / \mathrm{s}$. What is the wavelength of the new wave? [13.3 m]
2) The distance between the crest and the trough of a wave is 2.6 m . When the wave moves to a new medium with a speed of $9.5 \mathrm{~m} / \mathrm{s}$ and a wavelength of 1.00 m , what is the speed in the initial medium? [$49 \mathrm{~m} / \mathrm{s}$]
3) A wave's length changes from 150 m to 225 m when it switches media. What is the new speed of the wave if it was initially moving at $2.00 \mathrm{~km} / \mathrm{s}$? $\left[3.0 \times 10^{3} \mathrm{~m} / \mathrm{s}\right.$]
4) The frequency of a wave moving at $25.0 \mathrm{~m} / \mathrm{s}$ is 50.0 Hz . If the wavelength increases by 20.0 m when it switches media, what is the speed of the wave in the second medium? [$1030 \mathrm{~m} / \mathrm{s}$]
5) Blue light in air has a frequency of $4.75 \times 10^{-7} \mathrm{~Hz}$. What is the wavelength in glass for blue light if it travels at $2.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$? [$4.21 \times 10^{14} \mathrm{~m}$]
6) Draw the reflected pulses on the blank media.

7) The two pulses below are approaching each other at a speed of one square per second. Copy the diagram and draw their superposition after 7 seconds have elapsed.

The two pulses below are approaching each other at a speed of 2 squares per second. Copy the
8) diagram and draw the superposition after 3 seconds have elapsed.

9) The two pulses below are moving in the same direction. The left hand one is travelling at 5 squares per second and the right hand one at 2 squares per second. Copy the diagram and draw the superposition after 2 seconds.

10)

Draw the resultant pulse for each of the indicated overlaps as the pulses move towards each other.

Unit 4 Waves and Optics Day 4
2D Wave Interference

As you fill in the nodes and antinodes, you will observe a pattern where you see lines forming betweer As you fill in the nodes and antinodes, you will observe a pattern where you see lines forming between the two sources. These lines are called nodal and
f they are far apart relative to their wavelength, there are that are___ to see
If they are close together relative to their wavelength, there are when you look for them
Let's try to build one on the next page

Unit 4 Waves and Optics Day 5

Introduction to Sound

Sound is a \qquad wave produced by a vibrating object. Imagine a flat surface moving back and forth inside a speaker. The vibrations of the speaker surface result in compressions and rarefactions in the air. Your \qquad , in turn, perceive these vibrations as sound.

Sound Frequency

The \qquad of sound is determine by Frequency
high-frequency \rightarrow \qquad -pitch (____),
low-frequency \rightarrow \qquad -pitch (\qquad
Determine Max and Min Audible Frequencies
$f_{\text {min }}$: \qquad $f_{\max }:$ \qquad

Side note: dogs can hear both lower and higher pitched sounds ($15 \mathrm{~Hz}-50 \mathrm{kHz}$) than humans, while cats can hear higher pitched sounds than dogs or humans but cannot hear low-pitched sounds that we can hear ($60 \mathrm{~Hz}-65 \mathrm{kHz}$).

Speed of Sound

The speed of sound depends on its \qquad
(more dense \rightarrow faster)
sound travels at \qquad in air at room temperature or \qquad in air at $0^{\circ} \mathrm{C}$.

Sound travels faster in \qquad air compared to
\qquad air. Speed increases by about
\qquad of air temperature.
$v_{\text {sound }}=$

Mach Number

a \qquad of the object speed to the speed of sound, so you can calculate it from:

$$
\text { Mach Number }=\frac{v_{\text {object }}}{v_{\text {sound }}}=\frac{v}{343}
$$

ex) What is the speed of a cruise missile travelling at Mach 0.8 ?

Ex) What is the speed of sound at $5^{\circ} \mathrm{C}$ air?
Ex) A bass guitar produces a $70-\mathrm{Hz}$ sound wave at room temperature. Determine the length of the sound wave.

Ex) A $250-\mathrm{Hz}$ sound wave is 1.42 m long. Determine the speed of sound in air for this situation and the corresponding air temperature

Sound Volume

Volume of a sound (or its intensity) is based on the \qquad of the wave.

Higher amplitude waves \rightarrow more \qquad $=$ \qquad volume. We use the decibel scale (units decibels, or dB) to measure the intensity of a sound. There is a fancy way to relate decibels to the power delivered to your ear by the sound wave, but the simplest way to think of it is this:

- 0 dB is an arbitrarily defined, incredibly low-intensity sound
- For every increase of 10 dB , the sound is 10 x more intense. See the table below:

Sound Intensity (dB)	Intensity Compared to Base Level
0	Base Level
10	10 x
20	100 x
30	1000 x

Beat

$$
f_{\text {beat }}=f_{2}-f_{1}
$$

Combined Wave (10 Hz Beat Frequency)

Wave Worksheet \#5: Assume the speed of sound in air is $343 \mathrm{~m} / \mathrm{s}$ unless otherwise noted.

1. The speed of sound, like all waves, depends on the \qquad through which it travels. Sound travels fastest in \qquad (solids, liquids, gases) and slowest in \qquad _.
2. The speed of sound in air depends on the \qquad of the air. At $0^{\circ} \mathrm{C}$, the speed of sound in air is
\qquad m / s. For every degree above $0^{\circ} \mathrm{C}$, the speed \qquad by $0.6 \mathrm{~m} / \mathrm{s}$. For every degree
below 0oC, the speed \qquad by $0.6 \mathrm{~m} / \mathrm{s}$.
The equation is:

$$
v_{\text {sound }}=_\quad \mathrm{m} / \mathrm{s}+0.6
$$

\qquad
3. What is the speed of sound at $35^{\circ} \mathrm{C}$? \qquad
4. What is the speed of sound at $-20^{\circ} \mathrm{C}$? \qquad
5. Other than the velocity/temperature equation, there are two important equation involving the speed of sound:

Rearrange one equation to solve for: $f=$ \qquad ; $1=$ \qquad Rearrange the other to solve for: $d=$ \qquad ; t = \qquad
6. A 320 Hz tuning fork will produce a wave of what wavelength in air at $22^{\circ} \mathrm{C}$?
7. We see a bolt of lightning and 4 s later we hear the thunderclap. If the speed of sound in air is $343 \mathrm{~m} / \mathrm{s}$, how far away is the lightning?
8. How many seconds will it take an echo to reach your ears if you yell toward a mountain 82 m away on a day when the air temperature is $0^{\circ} \mathrm{C}$?
9. You look up and see a helicopter pass directly overhead. 3.10s later you hear the sound of the engine. If the air temperature is $23.0^{\circ} \mathrm{C}$, how high was the helicopter flying?
10. Navy ships use sonar (sound navigation and ranging) to detect submarines. A sound pulse sent by the ship reflects off the submarine. If the submarine is 2.2 km away from the ship, and the speed of sound in seawater is $1400 \mathrm{~m} / \mathrm{s}$, how long will it take the sound pulse to travel out and back?
11. A person is listening with his ear against the rail for an oncoming train. When the train is 1.65 km away, how long will it take him to hear the sound of the whistle? (The speed of sound in steel is $5200 \mathrm{~m} / \mathrm{s}$.)

How long would it take his friend who is standing nearby to hear the same whistle if the air temperature is $0^{\circ} \mathrm{C}$?
12. If a ship captain sounds a foghorn toward an iceberg and hears the echo 4.6 s later, how far away is the iceberg? (air temperature is $-10^{\circ} \mathrm{C}$) Think about this one. If you make a mistake, the ship could run into the iceberg!!!

Unit 4 Waves and Optics Day 6
 Standing Wave and Diffraction

- Standing waves are caused by \qquad and \qquad interference - Areas of complete destructive interference have \qquad and are called \qquad - Areas of complete constructive interference have \qquad are called \qquad - Standing waves have fixed \qquad called \qquad _.	How to create Standing Waves? - When a wave hits a \qquad it will reflect and \qquad its amplitude. - If a series of waves are sent along a string the reflected pulse will...... - If the waves are sent at just the right \qquad we will create a standing wave

Two fixed ends (Standing wave in a rope. Ex, string instruments: guitar, piano or violin)

Harmonics on a Guitar

When you pluck a string, you set up a standing wave, with stationary \qquad at the nut and bridge. When you fret the string (i.e. push it down with your finger), you change the \qquad between these nodes, and it changes the note.

Fun fact: The 12th fret is exactly halfway along the string, and when fretted there will produce a note one octave higher than the unfretted string. (For example, the top string is generally an E , and the note at the 12th fret is a higher E .)

One open End - (standing wave in air columns. Ex. Clarinet, saxophone)
Mouthpiece - pressure varies as you blow (varying pressure = \qquad _).
Note: pressure fixed at the closed end = \qquad

Open Both end - (standing wave in air column. Ex. Flute, organ)
$1^{\text {st }}$ Harmonic

$2^{\text {nd }}$ Harmonic

$3^{\text {rd }}$ Harmonic

$4^{\text {th }}$ Harmonic

Ex) Use the graphic below to answer these questions

1) Which harmonic is shown in each of the strings below?
2) Label the nodes and antinodes on each of the standing waves shown below.
3) How many wavelengths does each standing wave contain?
4) Determine the wavelength of each standing wave.

B

Ex) A clarinet is essentially a tube that is open at only one end. Sketch the wave patterns associated with the first and third harmonic of a clarinet that is 67.5 cm long. What frequencies would these waves have if the clarinet was played at 21.00 C ? $(128 \mathrm{~Hz}, 383 \mathrm{~Hz})$

Diffraction

When waves hit a \qquad (hole) or a \qquad (like a corner) they bend around. Forming
\qquad waves that spread out. The \qquad the aperture compared to the wavelength, the more pronounced this effect is (Lets see and sketch some examples).

	Wide gap \rightarrow \qquad diffraction effect	Narrow gap \rightarrow \qquad diffraction effect	Large wavelength \rightarrow \qquad diffraction effect

Wave Worksheet \#6: Standing wave

1) A standing wave in a rope has a frequency of 28 Hz at the second harmonic.
a. If the wavelength is 0.20 m , what is the distance between nodes? $(0.10 \mathrm{~m})$
b. What is the speed of the waves that make up the standing wave? $(5.6 \mathrm{~m} / \mathrm{s})$
c. What would the frequency of a rope vibrating at the third harmonic be? $(42 \mathrm{~Hz})$
2) An 85 cm long guitar string is plucked and vibrates at the fourth harmonic. What is the frequency of the sound produced if the speed of sound is $332 \mathrm{~m} / \mathrm{s}$? $(780 \mathrm{~Hz})$
3) Two children playing with a 6.0 m long skipping rope produce a standing wave pattern with five "loops". If the skipping rope is vibrating at 85 vibrations per minute, what is the speed of the vibration producing the standing wave pattern? $(3.4 \mathrm{~m} / \mathrm{s})$
4) Hollow wind chimes open at both ends resonate best at their third harmonic. How long should a chime be to produce a sound of 128 Hz when the temperature is $19^{\circ} \mathrm{C}$? (4.0 m)
5) A tuba can be considered a tube open at both ends. A tuba with a length of 7.0 m is played at its fundamental note at a temperature of $21^{\circ} \mathrm{C}$. What is the frequency of the fundamental? ($25 \mathrm{Hz)}$
6) A flute is essentially a tube that is open at both ends. Sketch the wave patterns associated with the first and third harmonic of a flute that is 67.5 cm long. What frequencies would these waves have if the flute was played at $21.0^{\circ} \mathrm{C}$? $(1020 \mathrm{~Hz}, 763 \mathrm{~Hz})$
7) A tuning fork was sounded over an adjustable air column open at one end. It was found that the distance between the fundamental and the 2 nd overtone was 90.0 cm . What was the frequency of the tuning fork if the air temperature was $0^{\circ} \mathrm{C}$? $(370 \mathrm{~Hz})$
8) Two clarinets are plated at the same time in a room with a temperature of $21^{\circ} \mathrm{C}$. One clarinet is 1.20 m long and the second is 1.22 m long. What beat frequency would you hear if both were played at their fundamental frequency at the same time? (1.2 Hz)

Unit 4 Waves and Optics Day 7

Doppler Effect

- Have you ever listened to an ambulance drive by quickly with their sirens going? What did it sound like?
- \qquad pitch as the ambulance was coming, \qquad pitch as it was leaving
- This phenomenon is called \qquad after Christian Doppler, who first labeled it in 1842.

Truck at rest

- when the truck is still, the sounds waves move outward in all the directions at the same
\qquad and \qquad . \qquad
- when the truck is moving, it produces a sound wave (compression), move, produce another sound wave, etc.
- since it moves between sound production, the air compressions (sound) are \qquad in front of the truck and \qquad behind the truck

Short \qquad \rightarrow higher \qquad \rightarrow \qquad pitch
long \qquad \rightarrow Lower \qquad \rightarrow \qquad pitch

$$
f_{o}=f_{s}\left(\frac{v_{w} \pm v_{o}}{v_{w} \mp v_{s}}\right)
$$

$f_{o}=$ frequency observed
$f_{s}=$ frequency of source

- 士/干 Use the top signs when the object is moving ________ the other object

Ex) What frequency is received by a mouse just before being dispatched by a hawk flying at it at $25.0 \mathrm{~m} / \mathrm{s}$ and emitting a screech of frequency 3500 Hz ? Take the speed of sound to be $331 \mathrm{~m} / \mathrm{s}$.

Ex) You are driving down the road at $20 \mathrm{~m} / \mathrm{s}$ when you approach a car going the other direction at $15 \mathrm{~m} / \mathrm{s}$ with their radio playing loudly. If you hear a certain note at 600 Hz , what is the original frequency? (Assume speed of sound is $343 \mathrm{~m} / \mathrm{s}$)

Ex) A duck is flying overhead while you stand still. As it moves away, you hear its quack at 190 Hz . Because you are a brilliant naturalist, you know that this type of duck quacks at 200 Hz . How fast is the duck flying?

Sonic Boom: The image below shows how wavefronts travel for an object traveling slower than the speed of sound, equal to the speed of sound and faster than the speed of sound:

(1) Slower than sound.

In case (1), the different spacing at the front and behind the object as it moves to the right explains why you hear different pitches as an ambulance gets closer and then drives past you: at the front, the wave fronts are packed closer together, so it sounds high-pitched; the opposite is true at the back

(2) At speed of sound.

In case (2), at the leading edge all of the wave fronts are stacked up: this creates a VERY high-pressure zone in front of the object.

(3) Faster than sound.

In case (3), anyone standing on the ground as the line of sound waves hits experiences a \qquad : all
of those stacked up sound waves make a very loud noise that hits you all at once, sounding like an explosion.

Worksheet 7: Doppler Effect and Sonic Booms

1. The pitch of a sound depends on the \qquad of the sound waves that reach the \qquad .
2. In each case, tell whether the pitch rises or drops:
a. The source of a sound moves away from the observer, who stands still. \qquad
b. The source stays still and the observer moves toward the source. \qquad
c. The source and observer move toward each other. \qquad
d. The source stays still, and the observer moves away. \qquad
3. All the cases above are examples of the \qquad Effect.

Calculation

1. When you hear a sonic boom, you often cannot see the plane that made it. Why is that?
2. When a car is at rest, its horn emits a frequency of 600 Hz . A person standing in the middle of the street hears the horn with a frequency of 580 Hz . Should the person jump out of the way? Account for your answer.
3. (a) What frequency is received by a person watching an oncoming ambulance moving at $110 \mathrm{~km} / \mathrm{h}$ and emitting a steady $800-\mathrm{Hz}$ sound from its siren? The speed of sound on this day is $345 \mathrm{~m} / \mathrm{s}$. (b) What frequency does she receive after the ambulance has passed? $(878 \mathrm{~Hz}, 735 \mathrm{~Hz})$
4. (a) At an air show a jet flies directly toward the stands at a speed of $1200 \mathrm{~km} / \mathrm{h}$, emitting a frequency of 3500 Hz , on a day when the speed of sound is $342 \mathrm{~m} / \mathrm{s}$. What frequency is received by the observers? (b) What frequency do they receive as the plane flies directly away from them?
5. What frequency is received by a mouse just before being dispatched by a hawk flying at it at $25.0 \mathrm{~m} / \mathrm{s}$ and emitting a screech of frequency 3500 Hz ? Take the speed of sound to be $331 \mathrm{~m} / \mathrm{s}$.
6. A spectator at a parade receives an $888-\mathrm{Hz}$ tone from an oncoming trumpeter who is playing an $880-\mathrm{Hz}$ note. At what speed is the musician approaching if the speed of sound is $338 \mathrm{~m} / \mathrm{s}$? ($3.05 \mathrm{~m} / \mathrm{s}$)
7. A commuter train blows its $200-\mathrm{Hz}$ horn as it approaches a crossing. The speed of sound is $335 \mathrm{~m} / \mathrm{s}$. (a) An observer waiting at the crossing receives a frequency of 208 Hz . What is the speed of the train? (b) What frequency does the observer receive as the train moves away? ($12.9 \mathrm{~m} / \mathrm{s}, 193 \mathrm{~Hz}$)
8. Suppose you are stopped at a traffic light, and an ambulance approaches you from behind with a speed of $18 \mathrm{~m} / \mathrm{s}$. the siren on the ambulance produces sound with a frequency of 955 Hz . The speed of sound I air is $343 \mathrm{~m} / \mathrm{s}$. What is the wavelength of the sound reaching your ears? (0.340 m)
