

we don't know a... so that means Kinematics!!!

$$V = V_0^2 + 20$$

$$v^2 = v^2 + 2ad$$

$$Q = \frac{v^2}{2d} = 3.0865 \text{m/s}^2$$

Remember, while the car is rolling there is no Fapp therefore the net force = Ff

But first kinematics...

$$a = ?$$

+

$$\sqrt{2} = V_0^2 + 2ad$$

$$a = \frac{-V_0^2}{Zd}$$

$$=-1.28 \, \text{m/s}^2$$

Remember that we will use the "-" sign when doing kinematics but not in our force equations

$$F_f = ma = (1400 kg)(1.28 m/s^2)$$

= 1800 N

Note the speed of the truck (35 m/s) does not matter, just that it is constant

Worksheet 4.6 -Newton's 2nd Law part 2

Worksheet 4.6 -Newton's 2nd Law part 2

Fair
$$F_{air} = mg = (75kg)(9.80 \% ^2)$$

$$= 735N$$

$$F_{net} = ma$$

$$F_{air} - F_{g} = ma$$

$$V = 25 \text{ km/h} \div 3.6 = 6.944 \text{ m/s}$$

$$V_0 = 220 \text{ km/h} \div 3.6 = 61.11 \text{ m/s}$$

$$Q = ?$$

$$Q = V = V_0 + Q_0 + Q$$

$$F_{air} = ma + F_g$$

= $(75 \text{ kg})(14.25 \text{ m/s}^2) + 735 \text{ N}$
= 1800 N

8)
$$F_{g} = 65N$$

$$F_{app} = ma$$

$$V = 13 \text{ m/s}$$

$$V_{o} = 0 \text{ m/s}$$

$$V = 8.0 \text{ m}$$

$$V = 10.56 \text{ m/s}$$

$$V = 10.56 \text{ m/s}$$

$$F_{app} = ma + F_{f}$$

= $(45 \text{ kg})(10.56 \text{m/s}^2) + 65 \text{ N}$
= 540 N

Worksheet 4.6 -Newton's 2nd Law part 2

6 -Newton's 2nd Law part 2

9 a.

$$V_0 = 24 \text{ m/s}$$
 $V = -8.0 \text{ m/s}$

Note that since the car bounces backwards its final velocity is negative!!!

Final Fina

Fwall = m a
=
$$(1350 \text{ kg})(35.56 \text{ m/s}^2)$$

= $4.8 \times 10^4 \text{ N}$

9) b.
$$F_{wall} = ma$$

 $V = -8.0 \text{m/s}$ $V = V_0 + a^{\frac{1}{4}}$
 $V_0 = 24.0 \text{m/s}$ $Q = \frac{V - V_0}{4}$
 $Q = \frac{V - V_0}{4}$

$$F_{wall} = m\alpha$$

= (1350 kg)(400 m/s²)
= 5.4×10⁵ N