1. A 3.0 kg ewok is traveling at a constant speed of 7.5 m / s. What is its kinetic energy?

$$
\begin{aligned}
E_{k} & =\frac{1}{2} m v^{2}=\frac{1}{2}(3.0 \mathrm{~kg})(7.5 \mathrm{~m} / \mathrm{s})^{2} \\
& =84 \mathrm{~J}
\end{aligned}
$$

2. The kinetic energy of a 20.0 N droid is $5.00 \times 10^{2} \mathrm{~J}$.

What is the speed of the droid?

$$
\begin{aligned}
& m=\frac{F_{g}}{g}=2.04 \mathrm{~kg} \\
& E_{k}=\frac{1}{2} m v^{2} \quad v \\
&=\sqrt{\frac{2 E_{k}}{m}}=\sqrt{\frac{2(500 \mathrm{~J})}{2.04 \mathrm{~kg}}} \\
&=22.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3. A 10.0 N lightsaber is accelerated from rest at a rate of $2.5 \mathrm{~m} / \mathrm{s}^{2}$. What is the kinetic energy of the lightsaber after it has accelerated over a distance of 15.0 m .

$$
\begin{aligned}
m & =\frac{F_{g}}{g}=1.02 \mathrm{~kg} & E_{k} & =\frac{1}{2} \mathrm{mv}^{2} \\
V & =\sqrt{2 \mathrm{ad}} & & =\frac{1}{2}(1.02)(8.660)^{2} \\
& =\sqrt{2(2.5)(15)} & & =38 \mathrm{~J} \\
& =8.660 \mathrm{~m} / \mathrm{s} & &
\end{aligned}
$$

4. A 1200.0 N Wookie jumps off a cliff on Earth. What is its kinetic energy after it falls for 4.50 s?

$$
\begin{aligned}
V & =V_{0}+a t \\
& =0+(-9.8)(4.50) \\
& =-44.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
E_{k}=\frac{1}{2} m v^{2} & =\frac{1}{2}(122.4)(-44.1)^{2} \\
& =119000 \mathrm{~J}
\end{aligned}
$$

5. An 8.0 kg bantha poodoo is dropped from a height of 7.0 m . What is the kinetic energy of the poodoo just before it hits the ground? (No kinematics!)

6. A 9.00 kg object falls off of a 1.2 m high table. If all of the objects potential energy is converted into kinetic energy just before it hits the floor, how fast is it moving? (Solve without using kinematics)

$$
\begin{gathered}
E_{p_{i}}=m g h_{i}=(9.00 \mathrm{~kg})(9.8 \mathrm{v} / \mathrm{kg})(1.2 \mathrm{~m})=105.8 \mathrm{~J} \\
E_{k_{f}}=\frac{1}{2} m u_{f}^{2} \quad V \\
=\sqrt{\frac{2 E_{k}}{m}}=\sqrt{\frac{2(105.8 \mathrm{~J})}{9.00 \mathrm{Kg}}} \\
\\
=4.8 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

7. Solve \#6 using kinematics this time. Is there any difference?

$$
\begin{aligned}
V^{2} & =V_{0}^{2}+2 \mathrm{ad} \\
V & =\sqrt{2 \mathrm{ad}}=\sqrt{2(-9.8)(1.2)} \\
& =4.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

8. A golfer wishes to improve his driving distance. Which would have more effect:
(a) doubling the mass of his golf club or
(b) doubling the speed with which the clubhead strikes the ball?
Explain your answer.
(b) Since $E_{k}=\frac{1}{2} m v^{2}$

- Ex a m; if you double m you double E_{k}
- $E_{k} \propto v^{2}$; if you double v you in crease E_{k} by 4 times.

