Page 5

January 26, 2017 9:54 AM

Hot $\$ 0.5 / \mathrm{pc}$ \qquad Unit 4: Work, Energy and Power
(J) 5-Power $\Delta E_{p} / \Delta E_{k} /$ both Power is the rate of doing work

Power is measured in J / S or Watts (W)

Ex. Lover's Leap is a 122 m vertical climb. The record time of 4 min 25 s was achieved by Dan Osman (65 kg). What was his average power output during the climb?

Ex. A $1.00 \times 10^{3} \mathrm{~kg}$ car accelerates from rest to a velocity of $15.0 \mathrm{~m} / \mathrm{s}$ in 4.00 s . Calculate the power output of the car. Ignore friction.

1) $A 45.0$ kg student runs at a constant velocity up the incline shown. If the power output of the student is $1.50 \times 10^{3} \mathrm{~W}$, how long does it take the student to run the 9.0 m along the incline?

$$
P=\frac{\Delta E P}{t} \quad 1500=\frac{2646}{t} \quad t=1.764 \mathrm{sec}
$$

2) A 20.0 kg object is lifted vertically 2.50 m in 2.00 s at a constant velocity. Calculate the power output of the student.

$$
\begin{aligned}
& V=\frac{d}{t}=\frac{2.5}{2}=1.25 \mathrm{~m} / \mathrm{s} \\
& P=F_{a} \times \mathrm{V} \\
& P=196 \mathrm{~N}(1.25)=245 \mathrm{~N}
\end{aligned}
$$

Ex. A student uses 140 N to push a block up a ramp at a constant velocity of $2.2 \mathrm{~m} / \mathrm{s}$. What is their power output?

140 N
$P=F_{a} \cdot v=140 \times 2.2$
$\mathrm{P}=308 \mathrm{~W}$
Note that this formula is only useful when... Constant speed.

Power Worksheet 4.5

(3) A 2.00 kg object is accelerated uniformly from rest to $V_{f} 3.00 \mathrm{~m} / \mathrm{s}$ while moving 1.5 m across a level frictionless surface. Calculate the power output.
$V_{1}=0 \quad V_{t}^{2}=V_{1}^{2}+2 a d$
$V_{t}=3 \quad 3^{2}=0+2 a(1.5)$
$d=1.5 \quad a=3 \mathrm{~m} / \mathrm{m}^{2}$
$a=? \quad V_{t}=V_{:}+a t$
$t=? \quad 3=0+3(t)$
$t=1 \mathrm{sec}$
4) $\mathrm{An} 8.5 \times 10^{2} \mathrm{R}$ elevator is pulled up 32.0 m at a

* constant velocity of $1.40 \mathrm{~m} / \mathrm{s}$. Calculate the power

1) 1.8 s 2) 245 W 3) 9.0 W 4) 12000 W
